Step |
Hyp |
Ref |
Expression |
1 |
|
dochval2.o |
|- ._|_ = ( oc ` K ) |
2 |
|
dochval2.h |
|- H = ( LHyp ` K ) |
3 |
|
dochval2.i |
|- I = ( ( DIsoH ` K ) ` W ) |
4 |
|
dochval2.u |
|- U = ( ( DVecH ` K ) ` W ) |
5 |
|
dochval2.v |
|- V = ( Base ` U ) |
6 |
|
dochval2.n |
|- N = ( ( ocH ` K ) ` W ) |
7 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
8 |
|
eqid |
|- ( glb ` K ) = ( glb ` K ) |
9 |
7 8 1 2 3 4 5 6
|
dochval |
|- ( ( ( K e. HL /\ W e. H ) /\ X C_ V ) -> ( N ` X ) = ( I ` ( ._|_ ` ( ( glb ` K ) ` { x e. ( Base ` K ) | X C_ ( I ` x ) } ) ) ) ) |
10 |
|
hlclat |
|- ( K e. HL -> K e. CLat ) |
11 |
10
|
ad2antrr |
|- ( ( ( K e. HL /\ W e. H ) /\ X C_ V ) -> K e. CLat ) |
12 |
|
ssrab2 |
|- { x e. ( Base ` K ) | X C_ ( I ` x ) } C_ ( Base ` K ) |
13 |
7 8
|
clatglbcl |
|- ( ( K e. CLat /\ { x e. ( Base ` K ) | X C_ ( I ` x ) } C_ ( Base ` K ) ) -> ( ( glb ` K ) ` { x e. ( Base ` K ) | X C_ ( I ` x ) } ) e. ( Base ` K ) ) |
14 |
11 12 13
|
sylancl |
|- ( ( ( K e. HL /\ W e. H ) /\ X C_ V ) -> ( ( glb ` K ) ` { x e. ( Base ` K ) | X C_ ( I ` x ) } ) e. ( Base ` K ) ) |
15 |
7 2 3
|
dihcnvid1 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( glb ` K ) ` { x e. ( Base ` K ) | X C_ ( I ` x ) } ) e. ( Base ` K ) ) -> ( `' I ` ( I ` ( ( glb ` K ) ` { x e. ( Base ` K ) | X C_ ( I ` x ) } ) ) ) = ( ( glb ` K ) ` { x e. ( Base ` K ) | X C_ ( I ` x ) } ) ) |
16 |
14 15
|
syldan |
|- ( ( ( K e. HL /\ W e. H ) /\ X C_ V ) -> ( `' I ` ( I ` ( ( glb ` K ) ` { x e. ( Base ` K ) | X C_ ( I ` x ) } ) ) ) = ( ( glb ` K ) ` { x e. ( Base ` K ) | X C_ ( I ` x ) } ) ) |
17 |
7 8 2 3 4 5
|
dihglb2 |
|- ( ( ( K e. HL /\ W e. H ) /\ X C_ V ) -> ( I ` ( ( glb ` K ) ` { x e. ( Base ` K ) | X C_ ( I ` x ) } ) ) = |^| { z e. ran I | X C_ z } ) |
18 |
17
|
fveq2d |
|- ( ( ( K e. HL /\ W e. H ) /\ X C_ V ) -> ( `' I ` ( I ` ( ( glb ` K ) ` { x e. ( Base ` K ) | X C_ ( I ` x ) } ) ) ) = ( `' I ` |^| { z e. ran I | X C_ z } ) ) |
19 |
16 18
|
eqtr3d |
|- ( ( ( K e. HL /\ W e. H ) /\ X C_ V ) -> ( ( glb ` K ) ` { x e. ( Base ` K ) | X C_ ( I ` x ) } ) = ( `' I ` |^| { z e. ran I | X C_ z } ) ) |
20 |
19
|
fveq2d |
|- ( ( ( K e. HL /\ W e. H ) /\ X C_ V ) -> ( ._|_ ` ( ( glb ` K ) ` { x e. ( Base ` K ) | X C_ ( I ` x ) } ) ) = ( ._|_ ` ( `' I ` |^| { z e. ran I | X C_ z } ) ) ) |
21 |
20
|
fveq2d |
|- ( ( ( K e. HL /\ W e. H ) /\ X C_ V ) -> ( I ` ( ._|_ ` ( ( glb ` K ) ` { x e. ( Base ` K ) | X C_ ( I ` x ) } ) ) ) = ( I ` ( ._|_ ` ( `' I ` |^| { z e. ran I | X C_ z } ) ) ) ) |
22 |
9 21
|
eqtrd |
|- ( ( ( K e. HL /\ W e. H ) /\ X C_ V ) -> ( N ` X ) = ( I ` ( ._|_ ` ( `' I ` |^| { z e. ran I | X C_ z } ) ) ) ) |