| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dochcl.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 2 |
|
dochcl.i |
⊢ 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) |
| 3 |
|
dochcl.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
| 4 |
|
dochcl.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
| 5 |
|
dochcl.o |
⊢ ⊥ = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
| 6 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
| 7 |
|
eqid |
⊢ ( glb ‘ 𝐾 ) = ( glb ‘ 𝐾 ) |
| 8 |
|
eqid |
⊢ ( oc ‘ 𝐾 ) = ( oc ‘ 𝐾 ) |
| 9 |
6 7 8 1 2 3 4 5
|
dochval |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ⊆ 𝑉 ) → ( ⊥ ‘ 𝑋 ) = ( 𝐼 ‘ ( ( oc ‘ 𝐾 ) ‘ ( ( glb ‘ 𝐾 ) ‘ { 𝑦 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( 𝐼 ‘ 𝑦 ) } ) ) ) ) |
| 10 |
|
hlop |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ OP ) |
| 11 |
10
|
ad2antrr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ⊆ 𝑉 ) → 𝐾 ∈ OP ) |
| 12 |
|
hlclat |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ CLat ) |
| 13 |
12
|
ad2antrr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ⊆ 𝑉 ) → 𝐾 ∈ CLat ) |
| 14 |
|
ssrab2 |
⊢ { 𝑦 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( 𝐼 ‘ 𝑦 ) } ⊆ ( Base ‘ 𝐾 ) |
| 15 |
6 7
|
clatglbcl |
⊢ ( ( 𝐾 ∈ CLat ∧ { 𝑦 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( 𝐼 ‘ 𝑦 ) } ⊆ ( Base ‘ 𝐾 ) ) → ( ( glb ‘ 𝐾 ) ‘ { 𝑦 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( 𝐼 ‘ 𝑦 ) } ) ∈ ( Base ‘ 𝐾 ) ) |
| 16 |
13 14 15
|
sylancl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ⊆ 𝑉 ) → ( ( glb ‘ 𝐾 ) ‘ { 𝑦 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( 𝐼 ‘ 𝑦 ) } ) ∈ ( Base ‘ 𝐾 ) ) |
| 17 |
6 8
|
opoccl |
⊢ ( ( 𝐾 ∈ OP ∧ ( ( glb ‘ 𝐾 ) ‘ { 𝑦 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( 𝐼 ‘ 𝑦 ) } ) ∈ ( Base ‘ 𝐾 ) ) → ( ( oc ‘ 𝐾 ) ‘ ( ( glb ‘ 𝐾 ) ‘ { 𝑦 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( 𝐼 ‘ 𝑦 ) } ) ) ∈ ( Base ‘ 𝐾 ) ) |
| 18 |
11 16 17
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ⊆ 𝑉 ) → ( ( oc ‘ 𝐾 ) ‘ ( ( glb ‘ 𝐾 ) ‘ { 𝑦 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( 𝐼 ‘ 𝑦 ) } ) ) ∈ ( Base ‘ 𝐾 ) ) |
| 19 |
6 1 2
|
dihcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( oc ‘ 𝐾 ) ‘ ( ( glb ‘ 𝐾 ) ‘ { 𝑦 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( 𝐼 ‘ 𝑦 ) } ) ) ∈ ( Base ‘ 𝐾 ) ) → ( 𝐼 ‘ ( ( oc ‘ 𝐾 ) ‘ ( ( glb ‘ 𝐾 ) ‘ { 𝑦 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( 𝐼 ‘ 𝑦 ) } ) ) ) ∈ ran 𝐼 ) |
| 20 |
18 19
|
syldan |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ⊆ 𝑉 ) → ( 𝐼 ‘ ( ( oc ‘ 𝐾 ) ‘ ( ( glb ‘ 𝐾 ) ‘ { 𝑦 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( 𝐼 ‘ 𝑦 ) } ) ) ) ∈ ran 𝐼 ) |
| 21 |
9 20
|
eqeltrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ⊆ 𝑉 ) → ( ⊥ ‘ 𝑋 ) ∈ ran 𝐼 ) |