Step |
Hyp |
Ref |
Expression |
1 |
|
dochlss.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
dochlss.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
dochlss.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
4 |
|
dochlss.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑈 ) |
5 |
|
dochlss.o |
⊢ ⊥ = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
6 |
|
eqid |
⊢ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) |
7 |
1 6 2 3 5
|
dochcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ⊆ 𝑉 ) → ( ⊥ ‘ 𝑋 ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
8 |
1 2 6 4
|
dihrnlss |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ⊥ ‘ 𝑋 ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) → ( ⊥ ‘ 𝑋 ) ∈ 𝑆 ) |
9 |
7 8
|
syldan |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ⊆ 𝑉 ) → ( ⊥ ‘ 𝑋 ) ∈ 𝑆 ) |