Metamath Proof Explorer


Theorem dochlss

Description: A subspace orthocomplement is a subspace of the DVecH vector space. (Contributed by NM, 22-Jul-2014)

Ref Expression
Hypotheses dochlss.h 𝐻 = ( LHyp ‘ 𝐾 )
dochlss.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
dochlss.v 𝑉 = ( Base ‘ 𝑈 )
dochlss.s 𝑆 = ( LSubSp ‘ 𝑈 )
dochlss.o = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
Assertion dochlss ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋𝑉 ) → ( 𝑋 ) ∈ 𝑆 )

Proof

Step Hyp Ref Expression
1 dochlss.h 𝐻 = ( LHyp ‘ 𝐾 )
2 dochlss.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
3 dochlss.v 𝑉 = ( Base ‘ 𝑈 )
4 dochlss.s 𝑆 = ( LSubSp ‘ 𝑈 )
5 dochlss.o = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
6 eqid ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )
7 1 6 2 3 5 dochcl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋𝑉 ) → ( 𝑋 ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) )
8 1 2 6 4 dihrnlss ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋 ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) → ( 𝑋 ) ∈ 𝑆 )
9 7 8 syldan ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋𝑉 ) → ( 𝑋 ) ∈ 𝑆 )