Description: A subspace orthocomplement belongs to the DVecH vector space. (Contributed by NM, 22-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dochssv.h | ⊢ 𝐻 = ( LHyp ‘ 𝐾 ) | |
| dochssv.u | ⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | ||
| dochssv.v | ⊢ 𝑉 = ( Base ‘ 𝑈 ) | ||
| dochssv.o | ⊢ ⊥ = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) | ||
| Assertion | dochssv | ⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ⊆ 𝑉 ) → ( ⊥ ‘ 𝑋 ) ⊆ 𝑉 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dochssv.h | ⊢ 𝐻 = ( LHyp ‘ 𝐾 ) | |
| 2 | dochssv.u | ⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | |
| 3 | dochssv.v | ⊢ 𝑉 = ( Base ‘ 𝑈 ) | |
| 4 | dochssv.o | ⊢ ⊥ = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) | |
| 5 | eqid | ⊢ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) | |
| 6 | 1 5 2 3 4 | dochcl | ⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ⊆ 𝑉 ) → ( ⊥ ‘ 𝑋 ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 7 | 1 2 5 3 | dihrnss | ⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ⊥ ‘ 𝑋 ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) → ( ⊥ ‘ 𝑋 ) ⊆ 𝑉 ) |
| 8 | 6 7 | syldan | ⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ⊆ 𝑉 ) → ( ⊥ ‘ 𝑋 ) ⊆ 𝑉 ) |