Metamath Proof Explorer


Theorem dochssv

Description: A subspace orthocomplement belongs to the DVecH vector space. (Contributed by NM, 22-Jul-2014)

Ref Expression
Hypotheses dochssv.h 𝐻 = ( LHyp ‘ 𝐾 )
dochssv.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
dochssv.v 𝑉 = ( Base ‘ 𝑈 )
dochssv.o = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
Assertion dochssv ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋𝑉 ) → ( 𝑋 ) ⊆ 𝑉 )

Proof

Step Hyp Ref Expression
1 dochssv.h 𝐻 = ( LHyp ‘ 𝐾 )
2 dochssv.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
3 dochssv.v 𝑉 = ( Base ‘ 𝑈 )
4 dochssv.o = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
5 eqid ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )
6 1 5 2 3 4 dochcl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋𝑉 ) → ( 𝑋 ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) )
7 1 2 5 3 dihrnss ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋 ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) → ( 𝑋 ) ⊆ 𝑉 )
8 6 7 syldan ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋𝑉 ) → ( 𝑋 ) ⊆ 𝑉 )