| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dochssv.h |
|- H = ( LHyp ` K ) |
| 2 |
|
dochssv.u |
|- U = ( ( DVecH ` K ) ` W ) |
| 3 |
|
dochssv.v |
|- V = ( Base ` U ) |
| 4 |
|
dochssv.o |
|- ._|_ = ( ( ocH ` K ) ` W ) |
| 5 |
|
eqid |
|- ( ( DIsoH ` K ) ` W ) = ( ( DIsoH ` K ) ` W ) |
| 6 |
1 5 2 3 4
|
dochcl |
|- ( ( ( K e. HL /\ W e. H ) /\ X C_ V ) -> ( ._|_ ` X ) e. ran ( ( DIsoH ` K ) ` W ) ) |
| 7 |
1 2 5 3
|
dihrnss |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ._|_ ` X ) e. ran ( ( DIsoH ` K ) ` W ) ) -> ( ._|_ ` X ) C_ V ) |
| 8 |
6 7
|
syldan |
|- ( ( ( K e. HL /\ W e. H ) /\ X C_ V ) -> ( ._|_ ` X ) C_ V ) |