Step |
Hyp |
Ref |
Expression |
1 |
|
dochssv.h |
|- H = ( LHyp ` K ) |
2 |
|
dochssv.u |
|- U = ( ( DVecH ` K ) ` W ) |
3 |
|
dochssv.v |
|- V = ( Base ` U ) |
4 |
|
dochssv.o |
|- ._|_ = ( ( ocH ` K ) ` W ) |
5 |
|
eqid |
|- ( ( DIsoH ` K ) ` W ) = ( ( DIsoH ` K ) ` W ) |
6 |
1 5 2 3 4
|
dochcl |
|- ( ( ( K e. HL /\ W e. H ) /\ X C_ V ) -> ( ._|_ ` X ) e. ran ( ( DIsoH ` K ) ` W ) ) |
7 |
1 2 5 3
|
dihrnss |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ._|_ ` X ) e. ran ( ( DIsoH ` K ) ` W ) ) -> ( ._|_ ` X ) C_ V ) |
8 |
6 7
|
syldan |
|- ( ( ( K e. HL /\ W e. H ) /\ X C_ V ) -> ( ._|_ ` X ) C_ V ) |