Metamath Proof Explorer


Theorem dochssv

Description: A subspace orthocomplement belongs to the DVecH vector space. (Contributed by NM, 22-Jul-2014)

Ref Expression
Hypotheses dochssv.h H = LHyp K
dochssv.u U = DVecH K W
dochssv.v V = Base U
dochssv.o ˙ = ocH K W
Assertion dochssv K HL W H X V ˙ X V

Proof

Step Hyp Ref Expression
1 dochssv.h H = LHyp K
2 dochssv.u U = DVecH K W
3 dochssv.v V = Base U
4 dochssv.o ˙ = ocH K W
5 eqid DIsoH K W = DIsoH K W
6 1 5 2 3 4 dochcl K HL W H X V ˙ X ran DIsoH K W
7 1 2 5 3 dihrnss K HL W H ˙ X ran DIsoH K W ˙ X V
8 6 7 syldan K HL W H X V ˙ X V