Metamath Proof Explorer


Theorem dochssv

Description: A subspace orthocomplement belongs to the DVecH vector space. (Contributed by NM, 22-Jul-2014)

Ref Expression
Hypotheses dochssv.h H=LHypK
dochssv.u U=DVecHKW
dochssv.v V=BaseU
dochssv.o ˙=ocHKW
Assertion dochssv KHLWHXV˙XV

Proof

Step Hyp Ref Expression
1 dochssv.h H=LHypK
2 dochssv.u U=DVecHKW
3 dochssv.v V=BaseU
4 dochssv.o ˙=ocHKW
5 eqid DIsoHKW=DIsoHKW
6 1 5 2 3 4 dochcl KHLWHXV˙XranDIsoHKW
7 1 2 5 3 dihrnss KHLWH˙XranDIsoHKW˙XV
8 6 7 syldan KHLWHXV˙XV