Metamath Proof Explorer


Theorem dochfN

Description: Domain and codomain of the subspace orthocomplement for the DVecH vector space. (Contributed by NM, 27-Dec-2014) (New usage is discouraged.)

Ref Expression
Hypotheses dochf.h H = LHyp K
dochf.i I = DIsoH K W
dochf.u U = DVecH K W
dochf.v V = Base U
dochf.o ˙ = ocH K W
dochf.k φ K HL W H
Assertion dochfN φ ˙ : 𝒫 V ran I

Proof

Step Hyp Ref Expression
1 dochf.h H = LHyp K
2 dochf.i I = DIsoH K W
3 dochf.u U = DVecH K W
4 dochf.v V = Base U
5 dochf.o ˙ = ocH K W
6 dochf.k φ K HL W H
7 fvexd φ x 𝒫 V I oc K glb K y Base K | x I y V
8 eqid Base K = Base K
9 eqid glb K = glb K
10 eqid oc K = oc K
11 8 9 10 1 2 3 4 5 dochfval K HL W H ˙ = x 𝒫 V I oc K glb K y Base K | x I y
12 6 11 syl φ ˙ = x 𝒫 V I oc K glb K y Base K | x I y
13 elpwi y 𝒫 V y V
14 1 2 3 4 5 dochcl K HL W H y V ˙ y ran I
15 6 13 14 syl2an φ y 𝒫 V ˙ y ran I
16 7 12 15 fmpt2d φ ˙ : 𝒫 V ran I