| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dochf.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 2 |  | dochf.i | ⊢ 𝐼  =  ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 3 |  | dochf.u | ⊢ 𝑈  =  ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 4 |  | dochf.v | ⊢ 𝑉  =  ( Base ‘ 𝑈 ) | 
						
							| 5 |  | dochf.o | ⊢  ⊥   =  ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 6 |  | dochf.k | ⊢ ( 𝜑  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 7 |  | fvexd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝒫  𝑉 )  →  ( 𝐼 ‘ ( ( oc ‘ 𝐾 ) ‘ ( ( glb ‘ 𝐾 ) ‘ { 𝑦  ∈  ( Base ‘ 𝐾 )  ∣  𝑥  ⊆  ( 𝐼 ‘ 𝑦 ) } ) ) )  ∈  V ) | 
						
							| 8 |  | eqid | ⊢ ( Base ‘ 𝐾 )  =  ( Base ‘ 𝐾 ) | 
						
							| 9 |  | eqid | ⊢ ( glb ‘ 𝐾 )  =  ( glb ‘ 𝐾 ) | 
						
							| 10 |  | eqid | ⊢ ( oc ‘ 𝐾 )  =  ( oc ‘ 𝐾 ) | 
						
							| 11 | 8 9 10 1 2 3 4 5 | dochfval | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  →   ⊥   =  ( 𝑥  ∈  𝒫  𝑉  ↦  ( 𝐼 ‘ ( ( oc ‘ 𝐾 ) ‘ ( ( glb ‘ 𝐾 ) ‘ { 𝑦  ∈  ( Base ‘ 𝐾 )  ∣  𝑥  ⊆  ( 𝐼 ‘ 𝑦 ) } ) ) ) ) ) | 
						
							| 12 | 6 11 | syl | ⊢ ( 𝜑  →   ⊥   =  ( 𝑥  ∈  𝒫  𝑉  ↦  ( 𝐼 ‘ ( ( oc ‘ 𝐾 ) ‘ ( ( glb ‘ 𝐾 ) ‘ { 𝑦  ∈  ( Base ‘ 𝐾 )  ∣  𝑥  ⊆  ( 𝐼 ‘ 𝑦 ) } ) ) ) ) ) | 
						
							| 13 |  | elpwi | ⊢ ( 𝑦  ∈  𝒫  𝑉  →  𝑦  ⊆  𝑉 ) | 
						
							| 14 | 1 2 3 4 5 | dochcl | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝑦  ⊆  𝑉 )  →  (  ⊥  ‘ 𝑦 )  ∈  ran  𝐼 ) | 
						
							| 15 | 6 13 14 | syl2an | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝒫  𝑉 )  →  (  ⊥  ‘ 𝑦 )  ∈  ran  𝐼 ) | 
						
							| 16 | 7 12 15 | fmpt2d | ⊢ ( 𝜑  →   ⊥  : 𝒫  𝑉 ⟶ ran  𝐼 ) |