| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dochval.b | ⊢ 𝐵  =  ( Base ‘ 𝐾 ) | 
						
							| 2 |  | dochval.g | ⊢ 𝐺  =  ( glb ‘ 𝐾 ) | 
						
							| 3 |  | dochval.o | ⊢  ⊥   =  ( oc ‘ 𝐾 ) | 
						
							| 4 |  | dochval.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 5 |  | dochval.i | ⊢ 𝐼  =  ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 6 |  | dochval.u | ⊢ 𝑈  =  ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 7 |  | dochval.v | ⊢ 𝑉  =  ( Base ‘ 𝑈 ) | 
						
							| 8 |  | dochval.n | ⊢ 𝑁  =  ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 9 | 1 2 3 4 | dochffval | ⊢ ( 𝐾  ∈  𝑋  →  ( ocH ‘ 𝐾 )  =  ( 𝑤  ∈  𝐻  ↦  ( 𝑥  ∈  𝒫  ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑤 ) )  ↦  ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑤 ) ‘ (  ⊥  ‘ ( 𝐺 ‘ { 𝑦  ∈  𝐵  ∣  𝑥  ⊆  ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑦 ) } ) ) ) ) ) ) | 
						
							| 10 | 9 | fveq1d | ⊢ ( 𝐾  ∈  𝑋  →  ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )  =  ( ( 𝑤  ∈  𝐻  ↦  ( 𝑥  ∈  𝒫  ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑤 ) )  ↦  ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑤 ) ‘ (  ⊥  ‘ ( 𝐺 ‘ { 𝑦  ∈  𝐵  ∣  𝑥  ⊆  ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑦 ) } ) ) ) ) ) ‘ 𝑊 ) ) | 
						
							| 11 | 8 10 | eqtrid | ⊢ ( 𝐾  ∈  𝑋  →  𝑁  =  ( ( 𝑤  ∈  𝐻  ↦  ( 𝑥  ∈  𝒫  ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑤 ) )  ↦  ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑤 ) ‘ (  ⊥  ‘ ( 𝐺 ‘ { 𝑦  ∈  𝐵  ∣  𝑥  ⊆  ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑦 ) } ) ) ) ) ) ‘ 𝑊 ) ) | 
						
							| 12 |  | fveq2 | ⊢ ( 𝑤  =  𝑊  →  ( ( DVecH ‘ 𝐾 ) ‘ 𝑤 )  =  ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) | 
						
							| 13 | 12 6 | eqtr4di | ⊢ ( 𝑤  =  𝑊  →  ( ( DVecH ‘ 𝐾 ) ‘ 𝑤 )  =  𝑈 ) | 
						
							| 14 | 13 | fveq2d | ⊢ ( 𝑤  =  𝑊  →  ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑤 ) )  =  ( Base ‘ 𝑈 ) ) | 
						
							| 15 | 14 7 | eqtr4di | ⊢ ( 𝑤  =  𝑊  →  ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑤 ) )  =  𝑉 ) | 
						
							| 16 | 15 | pweqd | ⊢ ( 𝑤  =  𝑊  →  𝒫  ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑤 ) )  =  𝒫  𝑉 ) | 
						
							| 17 |  | fveq2 | ⊢ ( 𝑤  =  𝑊  →  ( ( DIsoH ‘ 𝐾 ) ‘ 𝑤 )  =  ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) | 
						
							| 18 | 17 5 | eqtr4di | ⊢ ( 𝑤  =  𝑊  →  ( ( DIsoH ‘ 𝐾 ) ‘ 𝑤 )  =  𝐼 ) | 
						
							| 19 | 18 | fveq1d | ⊢ ( 𝑤  =  𝑊  →  ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑦 )  =  ( 𝐼 ‘ 𝑦 ) ) | 
						
							| 20 | 19 | sseq2d | ⊢ ( 𝑤  =  𝑊  →  ( 𝑥  ⊆  ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑦 )  ↔  𝑥  ⊆  ( 𝐼 ‘ 𝑦 ) ) ) | 
						
							| 21 | 20 | rabbidv | ⊢ ( 𝑤  =  𝑊  →  { 𝑦  ∈  𝐵  ∣  𝑥  ⊆  ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑦 ) }  =  { 𝑦  ∈  𝐵  ∣  𝑥  ⊆  ( 𝐼 ‘ 𝑦 ) } ) | 
						
							| 22 | 21 | fveq2d | ⊢ ( 𝑤  =  𝑊  →  ( 𝐺 ‘ { 𝑦  ∈  𝐵  ∣  𝑥  ⊆  ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑦 ) } )  =  ( 𝐺 ‘ { 𝑦  ∈  𝐵  ∣  𝑥  ⊆  ( 𝐼 ‘ 𝑦 ) } ) ) | 
						
							| 23 | 22 | fveq2d | ⊢ ( 𝑤  =  𝑊  →  (  ⊥  ‘ ( 𝐺 ‘ { 𝑦  ∈  𝐵  ∣  𝑥  ⊆  ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑦 ) } ) )  =  (  ⊥  ‘ ( 𝐺 ‘ { 𝑦  ∈  𝐵  ∣  𝑥  ⊆  ( 𝐼 ‘ 𝑦 ) } ) ) ) | 
						
							| 24 | 18 23 | fveq12d | ⊢ ( 𝑤  =  𝑊  →  ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑤 ) ‘ (  ⊥  ‘ ( 𝐺 ‘ { 𝑦  ∈  𝐵  ∣  𝑥  ⊆  ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑦 ) } ) ) )  =  ( 𝐼 ‘ (  ⊥  ‘ ( 𝐺 ‘ { 𝑦  ∈  𝐵  ∣  𝑥  ⊆  ( 𝐼 ‘ 𝑦 ) } ) ) ) ) | 
						
							| 25 | 16 24 | mpteq12dv | ⊢ ( 𝑤  =  𝑊  →  ( 𝑥  ∈  𝒫  ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑤 ) )  ↦  ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑤 ) ‘ (  ⊥  ‘ ( 𝐺 ‘ { 𝑦  ∈  𝐵  ∣  𝑥  ⊆  ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑦 ) } ) ) ) )  =  ( 𝑥  ∈  𝒫  𝑉  ↦  ( 𝐼 ‘ (  ⊥  ‘ ( 𝐺 ‘ { 𝑦  ∈  𝐵  ∣  𝑥  ⊆  ( 𝐼 ‘ 𝑦 ) } ) ) ) ) ) | 
						
							| 26 |  | eqid | ⊢ ( 𝑤  ∈  𝐻  ↦  ( 𝑥  ∈  𝒫  ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑤 ) )  ↦  ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑤 ) ‘ (  ⊥  ‘ ( 𝐺 ‘ { 𝑦  ∈  𝐵  ∣  𝑥  ⊆  ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑦 ) } ) ) ) ) )  =  ( 𝑤  ∈  𝐻  ↦  ( 𝑥  ∈  𝒫  ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑤 ) )  ↦  ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑤 ) ‘ (  ⊥  ‘ ( 𝐺 ‘ { 𝑦  ∈  𝐵  ∣  𝑥  ⊆  ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑦 ) } ) ) ) ) ) | 
						
							| 27 | 7 | fvexi | ⊢ 𝑉  ∈  V | 
						
							| 28 | 27 | pwex | ⊢ 𝒫  𝑉  ∈  V | 
						
							| 29 | 28 | mptex | ⊢ ( 𝑥  ∈  𝒫  𝑉  ↦  ( 𝐼 ‘ (  ⊥  ‘ ( 𝐺 ‘ { 𝑦  ∈  𝐵  ∣  𝑥  ⊆  ( 𝐼 ‘ 𝑦 ) } ) ) ) )  ∈  V | 
						
							| 30 | 25 26 29 | fvmpt | ⊢ ( 𝑊  ∈  𝐻  →  ( ( 𝑤  ∈  𝐻  ↦  ( 𝑥  ∈  𝒫  ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑤 ) )  ↦  ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑤 ) ‘ (  ⊥  ‘ ( 𝐺 ‘ { 𝑦  ∈  𝐵  ∣  𝑥  ⊆  ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑦 ) } ) ) ) ) ) ‘ 𝑊 )  =  ( 𝑥  ∈  𝒫  𝑉  ↦  ( 𝐼 ‘ (  ⊥  ‘ ( 𝐺 ‘ { 𝑦  ∈  𝐵  ∣  𝑥  ⊆  ( 𝐼 ‘ 𝑦 ) } ) ) ) ) ) | 
						
							| 31 | 11 30 | sylan9eq | ⊢ ( ( 𝐾  ∈  𝑋  ∧  𝑊  ∈  𝐻 )  →  𝑁  =  ( 𝑥  ∈  𝒫  𝑉  ↦  ( 𝐼 ‘ (  ⊥  ‘ ( 𝐺 ‘ { 𝑦  ∈  𝐵  ∣  𝑥  ⊆  ( 𝐼 ‘ 𝑦 ) } ) ) ) ) ) |