Step |
Hyp |
Ref |
Expression |
1 |
|
dochval.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
dochval.g |
⊢ 𝐺 = ( glb ‘ 𝐾 ) |
3 |
|
dochval.o |
⊢ ⊥ = ( oc ‘ 𝐾 ) |
4 |
|
dochval.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
5 |
|
elex |
⊢ ( 𝐾 ∈ 𝑉 → 𝐾 ∈ V ) |
6 |
|
fveq2 |
⊢ ( 𝑘 = 𝐾 → ( LHyp ‘ 𝑘 ) = ( LHyp ‘ 𝐾 ) ) |
7 |
6 4
|
eqtr4di |
⊢ ( 𝑘 = 𝐾 → ( LHyp ‘ 𝑘 ) = 𝐻 ) |
8 |
|
fveq2 |
⊢ ( 𝑘 = 𝐾 → ( DVecH ‘ 𝑘 ) = ( DVecH ‘ 𝐾 ) ) |
9 |
8
|
fveq1d |
⊢ ( 𝑘 = 𝐾 → ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) = ( ( DVecH ‘ 𝐾 ) ‘ 𝑤 ) ) |
10 |
9
|
fveq2d |
⊢ ( 𝑘 = 𝐾 → ( Base ‘ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) ) = ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑤 ) ) ) |
11 |
10
|
pweqd |
⊢ ( 𝑘 = 𝐾 → 𝒫 ( Base ‘ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) ) = 𝒫 ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑤 ) ) ) |
12 |
|
fveq2 |
⊢ ( 𝑘 = 𝐾 → ( DIsoH ‘ 𝑘 ) = ( DIsoH ‘ 𝐾 ) ) |
13 |
12
|
fveq1d |
⊢ ( 𝑘 = 𝐾 → ( ( DIsoH ‘ 𝑘 ) ‘ 𝑤 ) = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑤 ) ) |
14 |
|
fveq2 |
⊢ ( 𝑘 = 𝐾 → ( oc ‘ 𝑘 ) = ( oc ‘ 𝐾 ) ) |
15 |
14 3
|
eqtr4di |
⊢ ( 𝑘 = 𝐾 → ( oc ‘ 𝑘 ) = ⊥ ) |
16 |
|
fveq2 |
⊢ ( 𝑘 = 𝐾 → ( glb ‘ 𝑘 ) = ( glb ‘ 𝐾 ) ) |
17 |
16 2
|
eqtr4di |
⊢ ( 𝑘 = 𝐾 → ( glb ‘ 𝑘 ) = 𝐺 ) |
18 |
|
fveq2 |
⊢ ( 𝑘 = 𝐾 → ( Base ‘ 𝑘 ) = ( Base ‘ 𝐾 ) ) |
19 |
18 1
|
eqtr4di |
⊢ ( 𝑘 = 𝐾 → ( Base ‘ 𝑘 ) = 𝐵 ) |
20 |
13
|
fveq1d |
⊢ ( 𝑘 = 𝐾 → ( ( ( DIsoH ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑦 ) = ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑦 ) ) |
21 |
20
|
sseq2d |
⊢ ( 𝑘 = 𝐾 → ( 𝑥 ⊆ ( ( ( DIsoH ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑦 ) ↔ 𝑥 ⊆ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑦 ) ) ) |
22 |
19 21
|
rabeqbidv |
⊢ ( 𝑘 = 𝐾 → { 𝑦 ∈ ( Base ‘ 𝑘 ) ∣ 𝑥 ⊆ ( ( ( DIsoH ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑦 ) } = { 𝑦 ∈ 𝐵 ∣ 𝑥 ⊆ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑦 ) } ) |
23 |
17 22
|
fveq12d |
⊢ ( 𝑘 = 𝐾 → ( ( glb ‘ 𝑘 ) ‘ { 𝑦 ∈ ( Base ‘ 𝑘 ) ∣ 𝑥 ⊆ ( ( ( DIsoH ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑦 ) } ) = ( 𝐺 ‘ { 𝑦 ∈ 𝐵 ∣ 𝑥 ⊆ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑦 ) } ) ) |
24 |
15 23
|
fveq12d |
⊢ ( 𝑘 = 𝐾 → ( ( oc ‘ 𝑘 ) ‘ ( ( glb ‘ 𝑘 ) ‘ { 𝑦 ∈ ( Base ‘ 𝑘 ) ∣ 𝑥 ⊆ ( ( ( DIsoH ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑦 ) } ) ) = ( ⊥ ‘ ( 𝐺 ‘ { 𝑦 ∈ 𝐵 ∣ 𝑥 ⊆ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑦 ) } ) ) ) |
25 |
13 24
|
fveq12d |
⊢ ( 𝑘 = 𝐾 → ( ( ( DIsoH ‘ 𝑘 ) ‘ 𝑤 ) ‘ ( ( oc ‘ 𝑘 ) ‘ ( ( glb ‘ 𝑘 ) ‘ { 𝑦 ∈ ( Base ‘ 𝑘 ) ∣ 𝑥 ⊆ ( ( ( DIsoH ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑦 ) } ) ) ) = ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑤 ) ‘ ( ⊥ ‘ ( 𝐺 ‘ { 𝑦 ∈ 𝐵 ∣ 𝑥 ⊆ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑦 ) } ) ) ) ) |
26 |
11 25
|
mpteq12dv |
⊢ ( 𝑘 = 𝐾 → ( 𝑥 ∈ 𝒫 ( Base ‘ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) ) ↦ ( ( ( DIsoH ‘ 𝑘 ) ‘ 𝑤 ) ‘ ( ( oc ‘ 𝑘 ) ‘ ( ( glb ‘ 𝑘 ) ‘ { 𝑦 ∈ ( Base ‘ 𝑘 ) ∣ 𝑥 ⊆ ( ( ( DIsoH ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑦 ) } ) ) ) ) = ( 𝑥 ∈ 𝒫 ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑤 ) ) ↦ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑤 ) ‘ ( ⊥ ‘ ( 𝐺 ‘ { 𝑦 ∈ 𝐵 ∣ 𝑥 ⊆ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑦 ) } ) ) ) ) ) |
27 |
7 26
|
mpteq12dv |
⊢ ( 𝑘 = 𝐾 → ( 𝑤 ∈ ( LHyp ‘ 𝑘 ) ↦ ( 𝑥 ∈ 𝒫 ( Base ‘ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) ) ↦ ( ( ( DIsoH ‘ 𝑘 ) ‘ 𝑤 ) ‘ ( ( oc ‘ 𝑘 ) ‘ ( ( glb ‘ 𝑘 ) ‘ { 𝑦 ∈ ( Base ‘ 𝑘 ) ∣ 𝑥 ⊆ ( ( ( DIsoH ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑦 ) } ) ) ) ) ) = ( 𝑤 ∈ 𝐻 ↦ ( 𝑥 ∈ 𝒫 ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑤 ) ) ↦ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑤 ) ‘ ( ⊥ ‘ ( 𝐺 ‘ { 𝑦 ∈ 𝐵 ∣ 𝑥 ⊆ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑦 ) } ) ) ) ) ) ) |
28 |
|
df-doch |
⊢ ocH = ( 𝑘 ∈ V ↦ ( 𝑤 ∈ ( LHyp ‘ 𝑘 ) ↦ ( 𝑥 ∈ 𝒫 ( Base ‘ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) ) ↦ ( ( ( DIsoH ‘ 𝑘 ) ‘ 𝑤 ) ‘ ( ( oc ‘ 𝑘 ) ‘ ( ( glb ‘ 𝑘 ) ‘ { 𝑦 ∈ ( Base ‘ 𝑘 ) ∣ 𝑥 ⊆ ( ( ( DIsoH ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑦 ) } ) ) ) ) ) ) |
29 |
27 28 4
|
mptfvmpt |
⊢ ( 𝐾 ∈ V → ( ocH ‘ 𝐾 ) = ( 𝑤 ∈ 𝐻 ↦ ( 𝑥 ∈ 𝒫 ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑤 ) ) ↦ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑤 ) ‘ ( ⊥ ‘ ( 𝐺 ‘ { 𝑦 ∈ 𝐵 ∣ 𝑥 ⊆ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑦 ) } ) ) ) ) ) ) |
30 |
5 29
|
syl |
⊢ ( 𝐾 ∈ 𝑉 → ( ocH ‘ 𝐾 ) = ( 𝑤 ∈ 𝐻 ↦ ( 𝑥 ∈ 𝒫 ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑤 ) ) ↦ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑤 ) ‘ ( ⊥ ‘ ( 𝐺 ‘ { 𝑦 ∈ 𝐵 ∣ 𝑥 ⊆ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑦 ) } ) ) ) ) ) ) |