| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dochval.b |  |-  B = ( Base ` K ) | 
						
							| 2 |  | dochval.g |  |-  G = ( glb ` K ) | 
						
							| 3 |  | dochval.o |  |-  ._|_ = ( oc ` K ) | 
						
							| 4 |  | dochval.h |  |-  H = ( LHyp ` K ) | 
						
							| 5 |  | elex |  |-  ( K e. V -> K e. _V ) | 
						
							| 6 |  | fveq2 |  |-  ( k = K -> ( LHyp ` k ) = ( LHyp ` K ) ) | 
						
							| 7 | 6 4 | eqtr4di |  |-  ( k = K -> ( LHyp ` k ) = H ) | 
						
							| 8 |  | fveq2 |  |-  ( k = K -> ( DVecH ` k ) = ( DVecH ` K ) ) | 
						
							| 9 | 8 | fveq1d |  |-  ( k = K -> ( ( DVecH ` k ) ` w ) = ( ( DVecH ` K ) ` w ) ) | 
						
							| 10 | 9 | fveq2d |  |-  ( k = K -> ( Base ` ( ( DVecH ` k ) ` w ) ) = ( Base ` ( ( DVecH ` K ) ` w ) ) ) | 
						
							| 11 | 10 | pweqd |  |-  ( k = K -> ~P ( Base ` ( ( DVecH ` k ) ` w ) ) = ~P ( Base ` ( ( DVecH ` K ) ` w ) ) ) | 
						
							| 12 |  | fveq2 |  |-  ( k = K -> ( DIsoH ` k ) = ( DIsoH ` K ) ) | 
						
							| 13 | 12 | fveq1d |  |-  ( k = K -> ( ( DIsoH ` k ) ` w ) = ( ( DIsoH ` K ) ` w ) ) | 
						
							| 14 |  | fveq2 |  |-  ( k = K -> ( oc ` k ) = ( oc ` K ) ) | 
						
							| 15 | 14 3 | eqtr4di |  |-  ( k = K -> ( oc ` k ) = ._|_ ) | 
						
							| 16 |  | fveq2 |  |-  ( k = K -> ( glb ` k ) = ( glb ` K ) ) | 
						
							| 17 | 16 2 | eqtr4di |  |-  ( k = K -> ( glb ` k ) = G ) | 
						
							| 18 |  | fveq2 |  |-  ( k = K -> ( Base ` k ) = ( Base ` K ) ) | 
						
							| 19 | 18 1 | eqtr4di |  |-  ( k = K -> ( Base ` k ) = B ) | 
						
							| 20 | 13 | fveq1d |  |-  ( k = K -> ( ( ( DIsoH ` k ) ` w ) ` y ) = ( ( ( DIsoH ` K ) ` w ) ` y ) ) | 
						
							| 21 | 20 | sseq2d |  |-  ( k = K -> ( x C_ ( ( ( DIsoH ` k ) ` w ) ` y ) <-> x C_ ( ( ( DIsoH ` K ) ` w ) ` y ) ) ) | 
						
							| 22 | 19 21 | rabeqbidv |  |-  ( k = K -> { y e. ( Base ` k ) | x C_ ( ( ( DIsoH ` k ) ` w ) ` y ) } = { y e. B | x C_ ( ( ( DIsoH ` K ) ` w ) ` y ) } ) | 
						
							| 23 | 17 22 | fveq12d |  |-  ( k = K -> ( ( glb ` k ) ` { y e. ( Base ` k ) | x C_ ( ( ( DIsoH ` k ) ` w ) ` y ) } ) = ( G ` { y e. B | x C_ ( ( ( DIsoH ` K ) ` w ) ` y ) } ) ) | 
						
							| 24 | 15 23 | fveq12d |  |-  ( k = K -> ( ( oc ` k ) ` ( ( glb ` k ) ` { y e. ( Base ` k ) | x C_ ( ( ( DIsoH ` k ) ` w ) ` y ) } ) ) = ( ._|_ ` ( G ` { y e. B | x C_ ( ( ( DIsoH ` K ) ` w ) ` y ) } ) ) ) | 
						
							| 25 | 13 24 | fveq12d |  |-  ( k = K -> ( ( ( DIsoH ` k ) ` w ) ` ( ( oc ` k ) ` ( ( glb ` k ) ` { y e. ( Base ` k ) | x C_ ( ( ( DIsoH ` k ) ` w ) ` y ) } ) ) ) = ( ( ( DIsoH ` K ) ` w ) ` ( ._|_ ` ( G ` { y e. B | x C_ ( ( ( DIsoH ` K ) ` w ) ` y ) } ) ) ) ) | 
						
							| 26 | 11 25 | mpteq12dv |  |-  ( k = K -> ( x e. ~P ( Base ` ( ( DVecH ` k ) ` w ) ) |-> ( ( ( DIsoH ` k ) ` w ) ` ( ( oc ` k ) ` ( ( glb ` k ) ` { y e. ( Base ` k ) | x C_ ( ( ( DIsoH ` k ) ` w ) ` y ) } ) ) ) ) = ( x e. ~P ( Base ` ( ( DVecH ` K ) ` w ) ) |-> ( ( ( DIsoH ` K ) ` w ) ` ( ._|_ ` ( G ` { y e. B | x C_ ( ( ( DIsoH ` K ) ` w ) ` y ) } ) ) ) ) ) | 
						
							| 27 | 7 26 | mpteq12dv |  |-  ( k = K -> ( w e. ( LHyp ` k ) |-> ( x e. ~P ( Base ` ( ( DVecH ` k ) ` w ) ) |-> ( ( ( DIsoH ` k ) ` w ) ` ( ( oc ` k ) ` ( ( glb ` k ) ` { y e. ( Base ` k ) | x C_ ( ( ( DIsoH ` k ) ` w ) ` y ) } ) ) ) ) ) = ( w e. H |-> ( x e. ~P ( Base ` ( ( DVecH ` K ) ` w ) ) |-> ( ( ( DIsoH ` K ) ` w ) ` ( ._|_ ` ( G ` { y e. B | x C_ ( ( ( DIsoH ` K ) ` w ) ` y ) } ) ) ) ) ) ) | 
						
							| 28 |  | df-doch |  |-  ocH = ( k e. _V |-> ( w e. ( LHyp ` k ) |-> ( x e. ~P ( Base ` ( ( DVecH ` k ) ` w ) ) |-> ( ( ( DIsoH ` k ) ` w ) ` ( ( oc ` k ) ` ( ( glb ` k ) ` { y e. ( Base ` k ) | x C_ ( ( ( DIsoH ` k ) ` w ) ` y ) } ) ) ) ) ) ) | 
						
							| 29 | 27 28 4 | mptfvmpt |  |-  ( K e. _V -> ( ocH ` K ) = ( w e. H |-> ( x e. ~P ( Base ` ( ( DVecH ` K ) ` w ) ) |-> ( ( ( DIsoH ` K ) ` w ) ` ( ._|_ ` ( G ` { y e. B | x C_ ( ( ( DIsoH ` K ) ` w ) ` y ) } ) ) ) ) ) ) | 
						
							| 30 | 5 29 | syl |  |-  ( K e. V -> ( ocH ` K ) = ( w e. H |-> ( x e. ~P ( Base ` ( ( DVecH ` K ) ` w ) ) |-> ( ( ( DIsoH ` K ) ` w ) ` ( ._|_ ` ( G ` { y e. B | x C_ ( ( ( DIsoH ` K ) ` w ) ` y ) } ) ) ) ) ) ) |