| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dochval.b |  |-  B = ( Base ` K ) | 
						
							| 2 |  | dochval.g |  |-  G = ( glb ` K ) | 
						
							| 3 |  | dochval.o |  |-  ._|_ = ( oc ` K ) | 
						
							| 4 |  | dochval.h |  |-  H = ( LHyp ` K ) | 
						
							| 5 |  | dochval.i |  |-  I = ( ( DIsoH ` K ) ` W ) | 
						
							| 6 |  | dochval.u |  |-  U = ( ( DVecH ` K ) ` W ) | 
						
							| 7 |  | dochval.v |  |-  V = ( Base ` U ) | 
						
							| 8 |  | dochval.n |  |-  N = ( ( ocH ` K ) ` W ) | 
						
							| 9 | 1 2 3 4 | dochffval |  |-  ( K e. X -> ( ocH ` K ) = ( w e. H |-> ( x e. ~P ( Base ` ( ( DVecH ` K ) ` w ) ) |-> ( ( ( DIsoH ` K ) ` w ) ` ( ._|_ ` ( G ` { y e. B | x C_ ( ( ( DIsoH ` K ) ` w ) ` y ) } ) ) ) ) ) ) | 
						
							| 10 | 9 | fveq1d |  |-  ( K e. X -> ( ( ocH ` K ) ` W ) = ( ( w e. H |-> ( x e. ~P ( Base ` ( ( DVecH ` K ) ` w ) ) |-> ( ( ( DIsoH ` K ) ` w ) ` ( ._|_ ` ( G ` { y e. B | x C_ ( ( ( DIsoH ` K ) ` w ) ` y ) } ) ) ) ) ) ` W ) ) | 
						
							| 11 | 8 10 | eqtrid |  |-  ( K e. X -> N = ( ( w e. H |-> ( x e. ~P ( Base ` ( ( DVecH ` K ) ` w ) ) |-> ( ( ( DIsoH ` K ) ` w ) ` ( ._|_ ` ( G ` { y e. B | x C_ ( ( ( DIsoH ` K ) ` w ) ` y ) } ) ) ) ) ) ` W ) ) | 
						
							| 12 |  | fveq2 |  |-  ( w = W -> ( ( DVecH ` K ) ` w ) = ( ( DVecH ` K ) ` W ) ) | 
						
							| 13 | 12 6 | eqtr4di |  |-  ( w = W -> ( ( DVecH ` K ) ` w ) = U ) | 
						
							| 14 | 13 | fveq2d |  |-  ( w = W -> ( Base ` ( ( DVecH ` K ) ` w ) ) = ( Base ` U ) ) | 
						
							| 15 | 14 7 | eqtr4di |  |-  ( w = W -> ( Base ` ( ( DVecH ` K ) ` w ) ) = V ) | 
						
							| 16 | 15 | pweqd |  |-  ( w = W -> ~P ( Base ` ( ( DVecH ` K ) ` w ) ) = ~P V ) | 
						
							| 17 |  | fveq2 |  |-  ( w = W -> ( ( DIsoH ` K ) ` w ) = ( ( DIsoH ` K ) ` W ) ) | 
						
							| 18 | 17 5 | eqtr4di |  |-  ( w = W -> ( ( DIsoH ` K ) ` w ) = I ) | 
						
							| 19 | 18 | fveq1d |  |-  ( w = W -> ( ( ( DIsoH ` K ) ` w ) ` y ) = ( I ` y ) ) | 
						
							| 20 | 19 | sseq2d |  |-  ( w = W -> ( x C_ ( ( ( DIsoH ` K ) ` w ) ` y ) <-> x C_ ( I ` y ) ) ) | 
						
							| 21 | 20 | rabbidv |  |-  ( w = W -> { y e. B | x C_ ( ( ( DIsoH ` K ) ` w ) ` y ) } = { y e. B | x C_ ( I ` y ) } ) | 
						
							| 22 | 21 | fveq2d |  |-  ( w = W -> ( G ` { y e. B | x C_ ( ( ( DIsoH ` K ) ` w ) ` y ) } ) = ( G ` { y e. B | x C_ ( I ` y ) } ) ) | 
						
							| 23 | 22 | fveq2d |  |-  ( w = W -> ( ._|_ ` ( G ` { y e. B | x C_ ( ( ( DIsoH ` K ) ` w ) ` y ) } ) ) = ( ._|_ ` ( G ` { y e. B | x C_ ( I ` y ) } ) ) ) | 
						
							| 24 | 18 23 | fveq12d |  |-  ( w = W -> ( ( ( DIsoH ` K ) ` w ) ` ( ._|_ ` ( G ` { y e. B | x C_ ( ( ( DIsoH ` K ) ` w ) ` y ) } ) ) ) = ( I ` ( ._|_ ` ( G ` { y e. B | x C_ ( I ` y ) } ) ) ) ) | 
						
							| 25 | 16 24 | mpteq12dv |  |-  ( w = W -> ( x e. ~P ( Base ` ( ( DVecH ` K ) ` w ) ) |-> ( ( ( DIsoH ` K ) ` w ) ` ( ._|_ ` ( G ` { y e. B | x C_ ( ( ( DIsoH ` K ) ` w ) ` y ) } ) ) ) ) = ( x e. ~P V |-> ( I ` ( ._|_ ` ( G ` { y e. B | x C_ ( I ` y ) } ) ) ) ) ) | 
						
							| 26 |  | eqid |  |-  ( w e. H |-> ( x e. ~P ( Base ` ( ( DVecH ` K ) ` w ) ) |-> ( ( ( DIsoH ` K ) ` w ) ` ( ._|_ ` ( G ` { y e. B | x C_ ( ( ( DIsoH ` K ) ` w ) ` y ) } ) ) ) ) ) = ( w e. H |-> ( x e. ~P ( Base ` ( ( DVecH ` K ) ` w ) ) |-> ( ( ( DIsoH ` K ) ` w ) ` ( ._|_ ` ( G ` { y e. B | x C_ ( ( ( DIsoH ` K ) ` w ) ` y ) } ) ) ) ) ) | 
						
							| 27 | 7 | fvexi |  |-  V e. _V | 
						
							| 28 | 27 | pwex |  |-  ~P V e. _V | 
						
							| 29 | 28 | mptex |  |-  ( x e. ~P V |-> ( I ` ( ._|_ ` ( G ` { y e. B | x C_ ( I ` y ) } ) ) ) ) e. _V | 
						
							| 30 | 25 26 29 | fvmpt |  |-  ( W e. H -> ( ( w e. H |-> ( x e. ~P ( Base ` ( ( DVecH ` K ) ` w ) ) |-> ( ( ( DIsoH ` K ) ` w ) ` ( ._|_ ` ( G ` { y e. B | x C_ ( ( ( DIsoH ` K ) ` w ) ` y ) } ) ) ) ) ) ` W ) = ( x e. ~P V |-> ( I ` ( ._|_ ` ( G ` { y e. B | x C_ ( I ` y ) } ) ) ) ) ) | 
						
							| 31 | 11 30 | sylan9eq |  |-  ( ( K e. X /\ W e. H ) -> N = ( x e. ~P V |-> ( I ` ( ._|_ ` ( G ` { y e. B | x C_ ( I ` y ) } ) ) ) ) ) |