Metamath Proof Explorer


Theorem dochfval

Description: Subspace orthocomplement for DVecH vector space. (Contributed by NM, 14-Mar-2014)

Ref Expression
Hypotheses dochval.b B=BaseK
dochval.g G=glbK
dochval.o ˙=ocK
dochval.h H=LHypK
dochval.i I=DIsoHKW
dochval.u U=DVecHKW
dochval.v V=BaseU
dochval.n N=ocHKW
Assertion dochfval KXWHN=x𝒫VI˙GyB|xIy

Proof

Step Hyp Ref Expression
1 dochval.b B=BaseK
2 dochval.g G=glbK
3 dochval.o ˙=ocK
4 dochval.h H=LHypK
5 dochval.i I=DIsoHKW
6 dochval.u U=DVecHKW
7 dochval.v V=BaseU
8 dochval.n N=ocHKW
9 1 2 3 4 dochffval KXocHK=wHx𝒫BaseDVecHKwDIsoHKw˙GyB|xDIsoHKwy
10 9 fveq1d KXocHKW=wHx𝒫BaseDVecHKwDIsoHKw˙GyB|xDIsoHKwyW
11 8 10 eqtrid KXN=wHx𝒫BaseDVecHKwDIsoHKw˙GyB|xDIsoHKwyW
12 fveq2 w=WDVecHKw=DVecHKW
13 12 6 eqtr4di w=WDVecHKw=U
14 13 fveq2d w=WBaseDVecHKw=BaseU
15 14 7 eqtr4di w=WBaseDVecHKw=V
16 15 pweqd w=W𝒫BaseDVecHKw=𝒫V
17 fveq2 w=WDIsoHKw=DIsoHKW
18 17 5 eqtr4di w=WDIsoHKw=I
19 18 fveq1d w=WDIsoHKwy=Iy
20 19 sseq2d w=WxDIsoHKwyxIy
21 20 rabbidv w=WyB|xDIsoHKwy=yB|xIy
22 21 fveq2d w=WGyB|xDIsoHKwy=GyB|xIy
23 22 fveq2d w=W˙GyB|xDIsoHKwy=˙GyB|xIy
24 18 23 fveq12d w=WDIsoHKw˙GyB|xDIsoHKwy=I˙GyB|xIy
25 16 24 mpteq12dv w=Wx𝒫BaseDVecHKwDIsoHKw˙GyB|xDIsoHKwy=x𝒫VI˙GyB|xIy
26 eqid wHx𝒫BaseDVecHKwDIsoHKw˙GyB|xDIsoHKwy=wHx𝒫BaseDVecHKwDIsoHKw˙GyB|xDIsoHKwy
27 7 fvexi VV
28 27 pwex 𝒫VV
29 28 mptex x𝒫VI˙GyB|xIyV
30 25 26 29 fvmpt WHwHx𝒫BaseDVecHKwDIsoHKw˙GyB|xDIsoHKwyW=x𝒫VI˙GyB|xIy
31 11 30 sylan9eq KXWHN=x𝒫VI˙GyB|xIy