| Step | Hyp | Ref | Expression | 
						
							| 0 |  | coch |  |-  ocH | 
						
							| 1 |  | vk |  |-  k | 
						
							| 2 |  | cvv |  |-  _V | 
						
							| 3 |  | vw |  |-  w | 
						
							| 4 |  | clh |  |-  LHyp | 
						
							| 5 | 1 | cv |  |-  k | 
						
							| 6 | 5 4 | cfv |  |-  ( LHyp ` k ) | 
						
							| 7 |  | vx |  |-  x | 
						
							| 8 |  | cbs |  |-  Base | 
						
							| 9 |  | cdvh |  |-  DVecH | 
						
							| 10 | 5 9 | cfv |  |-  ( DVecH ` k ) | 
						
							| 11 | 3 | cv |  |-  w | 
						
							| 12 | 11 10 | cfv |  |-  ( ( DVecH ` k ) ` w ) | 
						
							| 13 | 12 8 | cfv |  |-  ( Base ` ( ( DVecH ` k ) ` w ) ) | 
						
							| 14 | 13 | cpw |  |-  ~P ( Base ` ( ( DVecH ` k ) ` w ) ) | 
						
							| 15 |  | cdih |  |-  DIsoH | 
						
							| 16 | 5 15 | cfv |  |-  ( DIsoH ` k ) | 
						
							| 17 | 11 16 | cfv |  |-  ( ( DIsoH ` k ) ` w ) | 
						
							| 18 |  | coc |  |-  oc | 
						
							| 19 | 5 18 | cfv |  |-  ( oc ` k ) | 
						
							| 20 |  | cglb |  |-  glb | 
						
							| 21 | 5 20 | cfv |  |-  ( glb ` k ) | 
						
							| 22 |  | vy |  |-  y | 
						
							| 23 | 5 8 | cfv |  |-  ( Base ` k ) | 
						
							| 24 | 7 | cv |  |-  x | 
						
							| 25 | 22 | cv |  |-  y | 
						
							| 26 | 25 17 | cfv |  |-  ( ( ( DIsoH ` k ) ` w ) ` y ) | 
						
							| 27 | 24 26 | wss |  |-  x C_ ( ( ( DIsoH ` k ) ` w ) ` y ) | 
						
							| 28 | 27 22 23 | crab |  |-  { y e. ( Base ` k ) | x C_ ( ( ( DIsoH ` k ) ` w ) ` y ) } | 
						
							| 29 | 28 21 | cfv |  |-  ( ( glb ` k ) ` { y e. ( Base ` k ) | x C_ ( ( ( DIsoH ` k ) ` w ) ` y ) } ) | 
						
							| 30 | 29 19 | cfv |  |-  ( ( oc ` k ) ` ( ( glb ` k ) ` { y e. ( Base ` k ) | x C_ ( ( ( DIsoH ` k ) ` w ) ` y ) } ) ) | 
						
							| 31 | 30 17 | cfv |  |-  ( ( ( DIsoH ` k ) ` w ) ` ( ( oc ` k ) ` ( ( glb ` k ) ` { y e. ( Base ` k ) | x C_ ( ( ( DIsoH ` k ) ` w ) ` y ) } ) ) ) | 
						
							| 32 | 7 14 31 | cmpt |  |-  ( x e. ~P ( Base ` ( ( DVecH ` k ) ` w ) ) |-> ( ( ( DIsoH ` k ) ` w ) ` ( ( oc ` k ) ` ( ( glb ` k ) ` { y e. ( Base ` k ) | x C_ ( ( ( DIsoH ` k ) ` w ) ` y ) } ) ) ) ) | 
						
							| 33 | 3 6 32 | cmpt |  |-  ( w e. ( LHyp ` k ) |-> ( x e. ~P ( Base ` ( ( DVecH ` k ) ` w ) ) |-> ( ( ( DIsoH ` k ) ` w ) ` ( ( oc ` k ) ` ( ( glb ` k ) ` { y e. ( Base ` k ) | x C_ ( ( ( DIsoH ` k ) ` w ) ` y ) } ) ) ) ) ) | 
						
							| 34 | 1 2 33 | cmpt |  |-  ( k e. _V |-> ( w e. ( LHyp ` k ) |-> ( x e. ~P ( Base ` ( ( DVecH ` k ) ` w ) ) |-> ( ( ( DIsoH ` k ) ` w ) ` ( ( oc ` k ) ` ( ( glb ` k ) ` { y e. ( Base ` k ) | x C_ ( ( ( DIsoH ` k ) ` w ) ` y ) } ) ) ) ) ) ) | 
						
							| 35 | 0 34 | wceq |  |-  ocH = ( k e. _V |-> ( w e. ( LHyp ` k ) |-> ( x e. ~P ( Base ` ( ( DVecH ` k ) ` w ) ) |-> ( ( ( DIsoH ` k ) ` w ) ` ( ( oc ` k ) ` ( ( glb ` k ) ` { y e. ( Base ` k ) | x C_ ( ( ( DIsoH ` k ) ` w ) ` y ) } ) ) ) ) ) ) |