Step |
Hyp |
Ref |
Expression |
0 |
|
coch |
⊢ ocH |
1 |
|
vk |
⊢ 𝑘 |
2 |
|
cvv |
⊢ V |
3 |
|
vw |
⊢ 𝑤 |
4 |
|
clh |
⊢ LHyp |
5 |
1
|
cv |
⊢ 𝑘 |
6 |
5 4
|
cfv |
⊢ ( LHyp ‘ 𝑘 ) |
7 |
|
vx |
⊢ 𝑥 |
8 |
|
cbs |
⊢ Base |
9 |
|
cdvh |
⊢ DVecH |
10 |
5 9
|
cfv |
⊢ ( DVecH ‘ 𝑘 ) |
11 |
3
|
cv |
⊢ 𝑤 |
12 |
11 10
|
cfv |
⊢ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) |
13 |
12 8
|
cfv |
⊢ ( Base ‘ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) ) |
14 |
13
|
cpw |
⊢ 𝒫 ( Base ‘ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) ) |
15 |
|
cdih |
⊢ DIsoH |
16 |
5 15
|
cfv |
⊢ ( DIsoH ‘ 𝑘 ) |
17 |
11 16
|
cfv |
⊢ ( ( DIsoH ‘ 𝑘 ) ‘ 𝑤 ) |
18 |
|
coc |
⊢ oc |
19 |
5 18
|
cfv |
⊢ ( oc ‘ 𝑘 ) |
20 |
|
cglb |
⊢ glb |
21 |
5 20
|
cfv |
⊢ ( glb ‘ 𝑘 ) |
22 |
|
vy |
⊢ 𝑦 |
23 |
5 8
|
cfv |
⊢ ( Base ‘ 𝑘 ) |
24 |
7
|
cv |
⊢ 𝑥 |
25 |
22
|
cv |
⊢ 𝑦 |
26 |
25 17
|
cfv |
⊢ ( ( ( DIsoH ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑦 ) |
27 |
24 26
|
wss |
⊢ 𝑥 ⊆ ( ( ( DIsoH ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑦 ) |
28 |
27 22 23
|
crab |
⊢ { 𝑦 ∈ ( Base ‘ 𝑘 ) ∣ 𝑥 ⊆ ( ( ( DIsoH ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑦 ) } |
29 |
28 21
|
cfv |
⊢ ( ( glb ‘ 𝑘 ) ‘ { 𝑦 ∈ ( Base ‘ 𝑘 ) ∣ 𝑥 ⊆ ( ( ( DIsoH ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑦 ) } ) |
30 |
29 19
|
cfv |
⊢ ( ( oc ‘ 𝑘 ) ‘ ( ( glb ‘ 𝑘 ) ‘ { 𝑦 ∈ ( Base ‘ 𝑘 ) ∣ 𝑥 ⊆ ( ( ( DIsoH ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑦 ) } ) ) |
31 |
30 17
|
cfv |
⊢ ( ( ( DIsoH ‘ 𝑘 ) ‘ 𝑤 ) ‘ ( ( oc ‘ 𝑘 ) ‘ ( ( glb ‘ 𝑘 ) ‘ { 𝑦 ∈ ( Base ‘ 𝑘 ) ∣ 𝑥 ⊆ ( ( ( DIsoH ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑦 ) } ) ) ) |
32 |
7 14 31
|
cmpt |
⊢ ( 𝑥 ∈ 𝒫 ( Base ‘ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) ) ↦ ( ( ( DIsoH ‘ 𝑘 ) ‘ 𝑤 ) ‘ ( ( oc ‘ 𝑘 ) ‘ ( ( glb ‘ 𝑘 ) ‘ { 𝑦 ∈ ( Base ‘ 𝑘 ) ∣ 𝑥 ⊆ ( ( ( DIsoH ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑦 ) } ) ) ) ) |
33 |
3 6 32
|
cmpt |
⊢ ( 𝑤 ∈ ( LHyp ‘ 𝑘 ) ↦ ( 𝑥 ∈ 𝒫 ( Base ‘ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) ) ↦ ( ( ( DIsoH ‘ 𝑘 ) ‘ 𝑤 ) ‘ ( ( oc ‘ 𝑘 ) ‘ ( ( glb ‘ 𝑘 ) ‘ { 𝑦 ∈ ( Base ‘ 𝑘 ) ∣ 𝑥 ⊆ ( ( ( DIsoH ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑦 ) } ) ) ) ) ) |
34 |
1 2 33
|
cmpt |
⊢ ( 𝑘 ∈ V ↦ ( 𝑤 ∈ ( LHyp ‘ 𝑘 ) ↦ ( 𝑥 ∈ 𝒫 ( Base ‘ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) ) ↦ ( ( ( DIsoH ‘ 𝑘 ) ‘ 𝑤 ) ‘ ( ( oc ‘ 𝑘 ) ‘ ( ( glb ‘ 𝑘 ) ‘ { 𝑦 ∈ ( Base ‘ 𝑘 ) ∣ 𝑥 ⊆ ( ( ( DIsoH ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑦 ) } ) ) ) ) ) ) |
35 |
0 34
|
wceq |
⊢ ocH = ( 𝑘 ∈ V ↦ ( 𝑤 ∈ ( LHyp ‘ 𝑘 ) ↦ ( 𝑥 ∈ 𝒫 ( Base ‘ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) ) ↦ ( ( ( DIsoH ‘ 𝑘 ) ‘ 𝑤 ) ‘ ( ( oc ‘ 𝑘 ) ‘ ( ( glb ‘ 𝑘 ) ‘ { 𝑦 ∈ ( Base ‘ 𝑘 ) ∣ 𝑥 ⊆ ( ( ( DIsoH ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑦 ) } ) ) ) ) ) ) |