Metamath Proof Explorer


Definition df-doch

Description: Define subspace orthocomplement for DVecH vector space. Temporarily, we are using the range of the isomorphism instead of the set of closed subspaces. Later, when inner product is introduced, we will show that these are the same. (Contributed by NM, 14-Mar-2014)

Ref Expression
Assertion df-doch ocH = ( 𝑘 ∈ V ↦ ( 𝑤 ∈ ( LHyp ‘ 𝑘 ) ↦ ( 𝑥 ∈ 𝒫 ( Base ‘ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) ) ↦ ( ( ( DIsoH ‘ 𝑘 ) ‘ 𝑤 ) ‘ ( ( oc ‘ 𝑘 ) ‘ ( ( glb ‘ 𝑘 ) ‘ { 𝑦 ∈ ( Base ‘ 𝑘 ) ∣ 𝑥 ⊆ ( ( ( DIsoH ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑦 ) } ) ) ) ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 coch ocH
1 vk 𝑘
2 cvv V
3 vw 𝑤
4 clh LHyp
5 1 cv 𝑘
6 5 4 cfv ( LHyp ‘ 𝑘 )
7 vx 𝑥
8 cbs Base
9 cdvh DVecH
10 5 9 cfv ( DVecH ‘ 𝑘 )
11 3 cv 𝑤
12 11 10 cfv ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 )
13 12 8 cfv ( Base ‘ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) )
14 13 cpw 𝒫 ( Base ‘ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) )
15 cdih DIsoH
16 5 15 cfv ( DIsoH ‘ 𝑘 )
17 11 16 cfv ( ( DIsoH ‘ 𝑘 ) ‘ 𝑤 )
18 coc oc
19 5 18 cfv ( oc ‘ 𝑘 )
20 cglb glb
21 5 20 cfv ( glb ‘ 𝑘 )
22 vy 𝑦
23 5 8 cfv ( Base ‘ 𝑘 )
24 7 cv 𝑥
25 22 cv 𝑦
26 25 17 cfv ( ( ( DIsoH ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑦 )
27 24 26 wss 𝑥 ⊆ ( ( ( DIsoH ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑦 )
28 27 22 23 crab { 𝑦 ∈ ( Base ‘ 𝑘 ) ∣ 𝑥 ⊆ ( ( ( DIsoH ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑦 ) }
29 28 21 cfv ( ( glb ‘ 𝑘 ) ‘ { 𝑦 ∈ ( Base ‘ 𝑘 ) ∣ 𝑥 ⊆ ( ( ( DIsoH ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑦 ) } )
30 29 19 cfv ( ( oc ‘ 𝑘 ) ‘ ( ( glb ‘ 𝑘 ) ‘ { 𝑦 ∈ ( Base ‘ 𝑘 ) ∣ 𝑥 ⊆ ( ( ( DIsoH ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑦 ) } ) )
31 30 17 cfv ( ( ( DIsoH ‘ 𝑘 ) ‘ 𝑤 ) ‘ ( ( oc ‘ 𝑘 ) ‘ ( ( glb ‘ 𝑘 ) ‘ { 𝑦 ∈ ( Base ‘ 𝑘 ) ∣ 𝑥 ⊆ ( ( ( DIsoH ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑦 ) } ) ) )
32 7 14 31 cmpt ( 𝑥 ∈ 𝒫 ( Base ‘ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) ) ↦ ( ( ( DIsoH ‘ 𝑘 ) ‘ 𝑤 ) ‘ ( ( oc ‘ 𝑘 ) ‘ ( ( glb ‘ 𝑘 ) ‘ { 𝑦 ∈ ( Base ‘ 𝑘 ) ∣ 𝑥 ⊆ ( ( ( DIsoH ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑦 ) } ) ) ) )
33 3 6 32 cmpt ( 𝑤 ∈ ( LHyp ‘ 𝑘 ) ↦ ( 𝑥 ∈ 𝒫 ( Base ‘ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) ) ↦ ( ( ( DIsoH ‘ 𝑘 ) ‘ 𝑤 ) ‘ ( ( oc ‘ 𝑘 ) ‘ ( ( glb ‘ 𝑘 ) ‘ { 𝑦 ∈ ( Base ‘ 𝑘 ) ∣ 𝑥 ⊆ ( ( ( DIsoH ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑦 ) } ) ) ) ) )
34 1 2 33 cmpt ( 𝑘 ∈ V ↦ ( 𝑤 ∈ ( LHyp ‘ 𝑘 ) ↦ ( 𝑥 ∈ 𝒫 ( Base ‘ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) ) ↦ ( ( ( DIsoH ‘ 𝑘 ) ‘ 𝑤 ) ‘ ( ( oc ‘ 𝑘 ) ‘ ( ( glb ‘ 𝑘 ) ‘ { 𝑦 ∈ ( Base ‘ 𝑘 ) ∣ 𝑥 ⊆ ( ( ( DIsoH ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑦 ) } ) ) ) ) ) )
35 0 34 wceq ocH = ( 𝑘 ∈ V ↦ ( 𝑤 ∈ ( LHyp ‘ 𝑘 ) ↦ ( 𝑥 ∈ 𝒫 ( Base ‘ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) ) ↦ ( ( ( DIsoH ‘ 𝑘 ) ‘ 𝑤 ) ‘ ( ( oc ‘ 𝑘 ) ‘ ( ( glb ‘ 𝑘 ) ‘ { 𝑦 ∈ ( Base ‘ 𝑘 ) ∣ 𝑥 ⊆ ( ( ( DIsoH ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑦 ) } ) ) ) ) ) )