Metamath Proof Explorer


Definition df-doch

Description: Define subspace orthocomplement for DVecH vector space. Temporarily, we are using the range of the isomorphism instead of the set of closed subspaces. Later, when inner product is introduced, we will show that these are the same. (Contributed by NM, 14-Mar-2014)

Ref Expression
Assertion df-doch ocH=kVwLHypkx𝒫BaseDVecHkwDIsoHkwockglbkyBasek|xDIsoHkwy

Detailed syntax breakdown

Step Hyp Ref Expression
0 coch classocH
1 vk setvark
2 cvv classV
3 vw setvarw
4 clh classLHyp
5 1 cv setvark
6 5 4 cfv classLHypk
7 vx setvarx
8 cbs classBase
9 cdvh classDVecH
10 5 9 cfv classDVecHk
11 3 cv setvarw
12 11 10 cfv classDVecHkw
13 12 8 cfv classBaseDVecHkw
14 13 cpw class𝒫BaseDVecHkw
15 cdih classDIsoH
16 5 15 cfv classDIsoHk
17 11 16 cfv classDIsoHkw
18 coc classoc
19 5 18 cfv classock
20 cglb classglb
21 5 20 cfv classglbk
22 vy setvary
23 5 8 cfv classBasek
24 7 cv setvarx
25 22 cv setvary
26 25 17 cfv classDIsoHkwy
27 24 26 wss wffxDIsoHkwy
28 27 22 23 crab classyBasek|xDIsoHkwy
29 28 21 cfv classglbkyBasek|xDIsoHkwy
30 29 19 cfv classockglbkyBasek|xDIsoHkwy
31 30 17 cfv classDIsoHkwockglbkyBasek|xDIsoHkwy
32 7 14 31 cmpt classx𝒫BaseDVecHkwDIsoHkwockglbkyBasek|xDIsoHkwy
33 3 6 32 cmpt classwLHypkx𝒫BaseDVecHkwDIsoHkwockglbkyBasek|xDIsoHkwy
34 1 2 33 cmpt classkVwLHypkx𝒫BaseDVecHkwDIsoHkwockglbkyBasek|xDIsoHkwy
35 0 34 wceq wffocH=kVwLHypkx𝒫BaseDVecHkwDIsoHkwockglbkyBasek|xDIsoHkwy