Metamath Proof Explorer


Theorem dochlss

Description: A subspace orthocomplement is a subspace of the DVecH vector space. (Contributed by NM, 22-Jul-2014)

Ref Expression
Hypotheses dochlss.h H = LHyp K
dochlss.u U = DVecH K W
dochlss.v V = Base U
dochlss.s S = LSubSp U
dochlss.o ˙ = ocH K W
Assertion dochlss K HL W H X V ˙ X S

Proof

Step Hyp Ref Expression
1 dochlss.h H = LHyp K
2 dochlss.u U = DVecH K W
3 dochlss.v V = Base U
4 dochlss.s S = LSubSp U
5 dochlss.o ˙ = ocH K W
6 eqid DIsoH K W = DIsoH K W
7 1 6 2 3 5 dochcl K HL W H X V ˙ X ran DIsoH K W
8 1 2 6 4 dihrnlss K HL W H ˙ X ran DIsoH K W ˙ X S
9 7 8 syldan K HL W H X V ˙ X S