Step |
Hyp |
Ref |
Expression |
1 |
|
dochlss.h |
|- H = ( LHyp ` K ) |
2 |
|
dochlss.u |
|- U = ( ( DVecH ` K ) ` W ) |
3 |
|
dochlss.v |
|- V = ( Base ` U ) |
4 |
|
dochlss.s |
|- S = ( LSubSp ` U ) |
5 |
|
dochlss.o |
|- ._|_ = ( ( ocH ` K ) ` W ) |
6 |
|
eqid |
|- ( ( DIsoH ` K ) ` W ) = ( ( DIsoH ` K ) ` W ) |
7 |
1 6 2 3 5
|
dochcl |
|- ( ( ( K e. HL /\ W e. H ) /\ X C_ V ) -> ( ._|_ ` X ) e. ran ( ( DIsoH ` K ) ` W ) ) |
8 |
1 2 6 4
|
dihrnlss |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ._|_ ` X ) e. ran ( ( DIsoH ` K ) ` W ) ) -> ( ._|_ ` X ) e. S ) |
9 |
7 8
|
syldan |
|- ( ( ( K e. HL /\ W e. H ) /\ X C_ V ) -> ( ._|_ ` X ) e. S ) |