| Step |
Hyp |
Ref |
Expression |
| 1 |
|
clatglb.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
| 2 |
|
clatglb.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
| 3 |
|
clatglb.g |
⊢ 𝐺 = ( glb ‘ 𝐾 ) |
| 4 |
1 2 3
|
clatglble |
⊢ ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ∧ 𝑦 ∈ 𝑆 ) → ( 𝐺 ‘ 𝑆 ) ≤ 𝑦 ) |
| 5 |
4
|
3expa |
⊢ ( ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑦 ∈ 𝑆 ) → ( 𝐺 ‘ 𝑆 ) ≤ 𝑦 ) |
| 6 |
5
|
3adantl2 |
⊢ ( ( ( 𝐾 ∈ CLat ∧ 𝑋 ∈ 𝐵 ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑦 ∈ 𝑆 ) → ( 𝐺 ‘ 𝑆 ) ≤ 𝑦 ) |
| 7 |
|
simpl1 |
⊢ ( ( ( 𝐾 ∈ CLat ∧ 𝑋 ∈ 𝐵 ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑦 ∈ 𝑆 ) → 𝐾 ∈ CLat ) |
| 8 |
|
clatl |
⊢ ( 𝐾 ∈ CLat → 𝐾 ∈ Lat ) |
| 9 |
7 8
|
syl |
⊢ ( ( ( 𝐾 ∈ CLat ∧ 𝑋 ∈ 𝐵 ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑦 ∈ 𝑆 ) → 𝐾 ∈ Lat ) |
| 10 |
|
simpl2 |
⊢ ( ( ( 𝐾 ∈ CLat ∧ 𝑋 ∈ 𝐵 ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑦 ∈ 𝑆 ) → 𝑋 ∈ 𝐵 ) |
| 11 |
1 3
|
clatglbcl |
⊢ ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ) → ( 𝐺 ‘ 𝑆 ) ∈ 𝐵 ) |
| 12 |
11
|
3adant2 |
⊢ ( ( 𝐾 ∈ CLat ∧ 𝑋 ∈ 𝐵 ∧ 𝑆 ⊆ 𝐵 ) → ( 𝐺 ‘ 𝑆 ) ∈ 𝐵 ) |
| 13 |
12
|
adantr |
⊢ ( ( ( 𝐾 ∈ CLat ∧ 𝑋 ∈ 𝐵 ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑦 ∈ 𝑆 ) → ( 𝐺 ‘ 𝑆 ) ∈ 𝐵 ) |
| 14 |
|
ssel |
⊢ ( 𝑆 ⊆ 𝐵 → ( 𝑦 ∈ 𝑆 → 𝑦 ∈ 𝐵 ) ) |
| 15 |
14
|
3ad2ant3 |
⊢ ( ( 𝐾 ∈ CLat ∧ 𝑋 ∈ 𝐵 ∧ 𝑆 ⊆ 𝐵 ) → ( 𝑦 ∈ 𝑆 → 𝑦 ∈ 𝐵 ) ) |
| 16 |
15
|
imp |
⊢ ( ( ( 𝐾 ∈ CLat ∧ 𝑋 ∈ 𝐵 ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑦 ∈ 𝑆 ) → 𝑦 ∈ 𝐵 ) |
| 17 |
1 2
|
lattr |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ ( 𝐺 ‘ 𝑆 ) ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑋 ≤ ( 𝐺 ‘ 𝑆 ) ∧ ( 𝐺 ‘ 𝑆 ) ≤ 𝑦 ) → 𝑋 ≤ 𝑦 ) ) |
| 18 |
9 10 13 16 17
|
syl13anc |
⊢ ( ( ( 𝐾 ∈ CLat ∧ 𝑋 ∈ 𝐵 ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑦 ∈ 𝑆 ) → ( ( 𝑋 ≤ ( 𝐺 ‘ 𝑆 ) ∧ ( 𝐺 ‘ 𝑆 ) ≤ 𝑦 ) → 𝑋 ≤ 𝑦 ) ) |
| 19 |
6 18
|
mpan2d |
⊢ ( ( ( 𝐾 ∈ CLat ∧ 𝑋 ∈ 𝐵 ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑦 ∈ 𝑆 ) → ( 𝑋 ≤ ( 𝐺 ‘ 𝑆 ) → 𝑋 ≤ 𝑦 ) ) |
| 20 |
19
|
ralrimdva |
⊢ ( ( 𝐾 ∈ CLat ∧ 𝑋 ∈ 𝐵 ∧ 𝑆 ⊆ 𝐵 ) → ( 𝑋 ≤ ( 𝐺 ‘ 𝑆 ) → ∀ 𝑦 ∈ 𝑆 𝑋 ≤ 𝑦 ) ) |
| 21 |
1 2 3
|
clatglb |
⊢ ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ) → ( ∀ 𝑦 ∈ 𝑆 ( 𝐺 ‘ 𝑆 ) ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ ( 𝐺 ‘ 𝑆 ) ) ) ) |
| 22 |
|
breq1 |
⊢ ( 𝑧 = 𝑋 → ( 𝑧 ≤ 𝑦 ↔ 𝑋 ≤ 𝑦 ) ) |
| 23 |
22
|
ralbidv |
⊢ ( 𝑧 = 𝑋 → ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 ↔ ∀ 𝑦 ∈ 𝑆 𝑋 ≤ 𝑦 ) ) |
| 24 |
|
breq1 |
⊢ ( 𝑧 = 𝑋 → ( 𝑧 ≤ ( 𝐺 ‘ 𝑆 ) ↔ 𝑋 ≤ ( 𝐺 ‘ 𝑆 ) ) ) |
| 25 |
23 24
|
imbi12d |
⊢ ( 𝑧 = 𝑋 → ( ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ ( 𝐺 ‘ 𝑆 ) ) ↔ ( ∀ 𝑦 ∈ 𝑆 𝑋 ≤ 𝑦 → 𝑋 ≤ ( 𝐺 ‘ 𝑆 ) ) ) ) |
| 26 |
25
|
rspccv |
⊢ ( ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ ( 𝐺 ‘ 𝑆 ) ) → ( 𝑋 ∈ 𝐵 → ( ∀ 𝑦 ∈ 𝑆 𝑋 ≤ 𝑦 → 𝑋 ≤ ( 𝐺 ‘ 𝑆 ) ) ) ) |
| 27 |
21 26
|
simpl2im |
⊢ ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ) → ( 𝑋 ∈ 𝐵 → ( ∀ 𝑦 ∈ 𝑆 𝑋 ≤ 𝑦 → 𝑋 ≤ ( 𝐺 ‘ 𝑆 ) ) ) ) |
| 28 |
27
|
ex |
⊢ ( 𝐾 ∈ CLat → ( 𝑆 ⊆ 𝐵 → ( 𝑋 ∈ 𝐵 → ( ∀ 𝑦 ∈ 𝑆 𝑋 ≤ 𝑦 → 𝑋 ≤ ( 𝐺 ‘ 𝑆 ) ) ) ) ) |
| 29 |
28
|
com23 |
⊢ ( 𝐾 ∈ CLat → ( 𝑋 ∈ 𝐵 → ( 𝑆 ⊆ 𝐵 → ( ∀ 𝑦 ∈ 𝑆 𝑋 ≤ 𝑦 → 𝑋 ≤ ( 𝐺 ‘ 𝑆 ) ) ) ) ) |
| 30 |
29
|
3imp |
⊢ ( ( 𝐾 ∈ CLat ∧ 𝑋 ∈ 𝐵 ∧ 𝑆 ⊆ 𝐵 ) → ( ∀ 𝑦 ∈ 𝑆 𝑋 ≤ 𝑦 → 𝑋 ≤ ( 𝐺 ‘ 𝑆 ) ) ) |
| 31 |
20 30
|
impbid |
⊢ ( ( 𝐾 ∈ CLat ∧ 𝑋 ∈ 𝐵 ∧ 𝑆 ⊆ 𝐵 ) → ( 𝑋 ≤ ( 𝐺 ‘ 𝑆 ) ↔ ∀ 𝑦 ∈ 𝑆 𝑋 ≤ 𝑦 ) ) |