Step |
Hyp |
Ref |
Expression |
1 |
|
clatglb.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
clatglb.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
clatglb.g |
⊢ 𝐺 = ( glb ‘ 𝐾 ) |
4 |
|
simpl1 |
⊢ ( ( ( 𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇 ) ∧ 𝑦 ∈ 𝑆 ) → 𝐾 ∈ CLat ) |
5 |
|
simpl2 |
⊢ ( ( ( 𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇 ) ∧ 𝑦 ∈ 𝑆 ) → 𝑇 ⊆ 𝐵 ) |
6 |
|
simp3 |
⊢ ( ( 𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇 ) → 𝑆 ⊆ 𝑇 ) |
7 |
6
|
sselda |
⊢ ( ( ( 𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇 ) ∧ 𝑦 ∈ 𝑆 ) → 𝑦 ∈ 𝑇 ) |
8 |
1 2 3
|
clatglble |
⊢ ( ( 𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑦 ∈ 𝑇 ) → ( 𝐺 ‘ 𝑇 ) ≤ 𝑦 ) |
9 |
4 5 7 8
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇 ) ∧ 𝑦 ∈ 𝑆 ) → ( 𝐺 ‘ 𝑇 ) ≤ 𝑦 ) |
10 |
9
|
ralrimiva |
⊢ ( ( 𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇 ) → ∀ 𝑦 ∈ 𝑆 ( 𝐺 ‘ 𝑇 ) ≤ 𝑦 ) |
11 |
|
simp1 |
⊢ ( ( 𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇 ) → 𝐾 ∈ CLat ) |
12 |
1 3
|
clatglbcl |
⊢ ( ( 𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ) → ( 𝐺 ‘ 𝑇 ) ∈ 𝐵 ) |
13 |
12
|
3adant3 |
⊢ ( ( 𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇 ) → ( 𝐺 ‘ 𝑇 ) ∈ 𝐵 ) |
14 |
|
sstr |
⊢ ( ( 𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ 𝐵 ) → 𝑆 ⊆ 𝐵 ) |
15 |
14
|
ancoms |
⊢ ( ( 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇 ) → 𝑆 ⊆ 𝐵 ) |
16 |
15
|
3adant1 |
⊢ ( ( 𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇 ) → 𝑆 ⊆ 𝐵 ) |
17 |
1 2 3
|
clatleglb |
⊢ ( ( 𝐾 ∈ CLat ∧ ( 𝐺 ‘ 𝑇 ) ∈ 𝐵 ∧ 𝑆 ⊆ 𝐵 ) → ( ( 𝐺 ‘ 𝑇 ) ≤ ( 𝐺 ‘ 𝑆 ) ↔ ∀ 𝑦 ∈ 𝑆 ( 𝐺 ‘ 𝑇 ) ≤ 𝑦 ) ) |
18 |
11 13 16 17
|
syl3anc |
⊢ ( ( 𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇 ) → ( ( 𝐺 ‘ 𝑇 ) ≤ ( 𝐺 ‘ 𝑆 ) ↔ ∀ 𝑦 ∈ 𝑆 ( 𝐺 ‘ 𝑇 ) ≤ 𝑦 ) ) |
19 |
10 18
|
mpbird |
⊢ ( ( 𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇 ) → ( 𝐺 ‘ 𝑇 ) ≤ ( 𝐺 ‘ 𝑆 ) ) |