Metamath Proof Explorer


Theorem doch0

Description: Orthocomplement of the zero subspace. (Contributed by NM, 19-Jun-2014)

Ref Expression
Hypotheses doch0.h 𝐻 = ( LHyp ‘ 𝐾 )
doch0.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
doch0.o = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
doch0.v 𝑉 = ( Base ‘ 𝑈 )
doch0.z 0 = ( 0g𝑈 )
Assertion doch0 ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ( ‘ { 0 } ) = 𝑉 )

Proof

Step Hyp Ref Expression
1 doch0.h 𝐻 = ( LHyp ‘ 𝐾 )
2 doch0.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
3 doch0.o = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
4 doch0.v 𝑉 = ( Base ‘ 𝑈 )
5 doch0.z 0 = ( 0g𝑈 )
6 eqid ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )
7 1 6 2 5 dih0rn ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → { 0 } ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) )
8 eqid ( oc ‘ 𝐾 ) = ( oc ‘ 𝐾 )
9 8 1 6 3 dochvalr ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ { 0 } ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) → ( ‘ { 0 } ) = ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( oc ‘ 𝐾 ) ‘ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ { 0 } ) ) ) )
10 7 9 mpdan ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ( ‘ { 0 } ) = ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( oc ‘ 𝐾 ) ‘ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ { 0 } ) ) ) )
11 eqid ( 0. ‘ 𝐾 ) = ( 0. ‘ 𝐾 )
12 1 11 6 2 5 dih0cnv ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ { 0 } ) = ( 0. ‘ 𝐾 ) )
13 12 fveq2d ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ( ( oc ‘ 𝐾 ) ‘ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ { 0 } ) ) = ( ( oc ‘ 𝐾 ) ‘ ( 0. ‘ 𝐾 ) ) )
14 hlop ( 𝐾 ∈ HL → 𝐾 ∈ OP )
15 14 adantr ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → 𝐾 ∈ OP )
16 eqid ( 1. ‘ 𝐾 ) = ( 1. ‘ 𝐾 )
17 11 16 8 opoc0 ( 𝐾 ∈ OP → ( ( oc ‘ 𝐾 ) ‘ ( 0. ‘ 𝐾 ) ) = ( 1. ‘ 𝐾 ) )
18 15 17 syl ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ( ( oc ‘ 𝐾 ) ‘ ( 0. ‘ 𝐾 ) ) = ( 1. ‘ 𝐾 ) )
19 13 18 eqtrd ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ( ( oc ‘ 𝐾 ) ‘ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ { 0 } ) ) = ( 1. ‘ 𝐾 ) )
20 19 fveq2d ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( oc ‘ 𝐾 ) ‘ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ { 0 } ) ) ) = ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 1. ‘ 𝐾 ) ) )
21 16 1 6 2 4 dih1 ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 1. ‘ 𝐾 ) ) = 𝑉 )
22 20 21 eqtrd ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( oc ‘ 𝐾 ) ‘ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ { 0 } ) ) ) = 𝑉 )
23 10 22 eqtrd ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ( ‘ { 0 } ) = 𝑉 )