Metamath Proof Explorer


Theorem doch0

Description: Orthocomplement of the zero subspace. (Contributed by NM, 19-Jun-2014)

Ref Expression
Hypotheses doch0.h H = LHyp K
doch0.u U = DVecH K W
doch0.o ˙ = ocH K W
doch0.v V = Base U
doch0.z 0 ˙ = 0 U
Assertion doch0 K HL W H ˙ 0 ˙ = V

Proof

Step Hyp Ref Expression
1 doch0.h H = LHyp K
2 doch0.u U = DVecH K W
3 doch0.o ˙ = ocH K W
4 doch0.v V = Base U
5 doch0.z 0 ˙ = 0 U
6 eqid DIsoH K W = DIsoH K W
7 1 6 2 5 dih0rn K HL W H 0 ˙ ran DIsoH K W
8 eqid oc K = oc K
9 8 1 6 3 dochvalr K HL W H 0 ˙ ran DIsoH K W ˙ 0 ˙ = DIsoH K W oc K DIsoH K W -1 0 ˙
10 7 9 mpdan K HL W H ˙ 0 ˙ = DIsoH K W oc K DIsoH K W -1 0 ˙
11 eqid 0. K = 0. K
12 1 11 6 2 5 dih0cnv K HL W H DIsoH K W -1 0 ˙ = 0. K
13 12 fveq2d K HL W H oc K DIsoH K W -1 0 ˙ = oc K 0. K
14 hlop K HL K OP
15 14 adantr K HL W H K OP
16 eqid 1. K = 1. K
17 11 16 8 opoc0 K OP oc K 0. K = 1. K
18 15 17 syl K HL W H oc K 0. K = 1. K
19 13 18 eqtrd K HL W H oc K DIsoH K W -1 0 ˙ = 1. K
20 19 fveq2d K HL W H DIsoH K W oc K DIsoH K W -1 0 ˙ = DIsoH K W 1. K
21 16 1 6 2 4 dih1 K HL W H DIsoH K W 1. K = V
22 20 21 eqtrd K HL W H DIsoH K W oc K DIsoH K W -1 0 ˙ = V
23 10 22 eqtrd K HL W H ˙ 0 ˙ = V