Step |
Hyp |
Ref |
Expression |
1 |
|
doch0.h |
|- H = ( LHyp ` K ) |
2 |
|
doch0.u |
|- U = ( ( DVecH ` K ) ` W ) |
3 |
|
doch0.o |
|- ._|_ = ( ( ocH ` K ) ` W ) |
4 |
|
doch0.v |
|- V = ( Base ` U ) |
5 |
|
doch0.z |
|- .0. = ( 0g ` U ) |
6 |
|
eqid |
|- ( ( DIsoH ` K ) ` W ) = ( ( DIsoH ` K ) ` W ) |
7 |
1 6 2 5
|
dih0rn |
|- ( ( K e. HL /\ W e. H ) -> { .0. } e. ran ( ( DIsoH ` K ) ` W ) ) |
8 |
|
eqid |
|- ( oc ` K ) = ( oc ` K ) |
9 |
8 1 6 3
|
dochvalr |
|- ( ( ( K e. HL /\ W e. H ) /\ { .0. } e. ran ( ( DIsoH ` K ) ` W ) ) -> ( ._|_ ` { .0. } ) = ( ( ( DIsoH ` K ) ` W ) ` ( ( oc ` K ) ` ( `' ( ( DIsoH ` K ) ` W ) ` { .0. } ) ) ) ) |
10 |
7 9
|
mpdan |
|- ( ( K e. HL /\ W e. H ) -> ( ._|_ ` { .0. } ) = ( ( ( DIsoH ` K ) ` W ) ` ( ( oc ` K ) ` ( `' ( ( DIsoH ` K ) ` W ) ` { .0. } ) ) ) ) |
11 |
|
eqid |
|- ( 0. ` K ) = ( 0. ` K ) |
12 |
1 11 6 2 5
|
dih0cnv |
|- ( ( K e. HL /\ W e. H ) -> ( `' ( ( DIsoH ` K ) ` W ) ` { .0. } ) = ( 0. ` K ) ) |
13 |
12
|
fveq2d |
|- ( ( K e. HL /\ W e. H ) -> ( ( oc ` K ) ` ( `' ( ( DIsoH ` K ) ` W ) ` { .0. } ) ) = ( ( oc ` K ) ` ( 0. ` K ) ) ) |
14 |
|
hlop |
|- ( K e. HL -> K e. OP ) |
15 |
14
|
adantr |
|- ( ( K e. HL /\ W e. H ) -> K e. OP ) |
16 |
|
eqid |
|- ( 1. ` K ) = ( 1. ` K ) |
17 |
11 16 8
|
opoc0 |
|- ( K e. OP -> ( ( oc ` K ) ` ( 0. ` K ) ) = ( 1. ` K ) ) |
18 |
15 17
|
syl |
|- ( ( K e. HL /\ W e. H ) -> ( ( oc ` K ) ` ( 0. ` K ) ) = ( 1. ` K ) ) |
19 |
13 18
|
eqtrd |
|- ( ( K e. HL /\ W e. H ) -> ( ( oc ` K ) ` ( `' ( ( DIsoH ` K ) ` W ) ` { .0. } ) ) = ( 1. ` K ) ) |
20 |
19
|
fveq2d |
|- ( ( K e. HL /\ W e. H ) -> ( ( ( DIsoH ` K ) ` W ) ` ( ( oc ` K ) ` ( `' ( ( DIsoH ` K ) ` W ) ` { .0. } ) ) ) = ( ( ( DIsoH ` K ) ` W ) ` ( 1. ` K ) ) ) |
21 |
16 1 6 2 4
|
dih1 |
|- ( ( K e. HL /\ W e. H ) -> ( ( ( DIsoH ` K ) ` W ) ` ( 1. ` K ) ) = V ) |
22 |
20 21
|
eqtrd |
|- ( ( K e. HL /\ W e. H ) -> ( ( ( DIsoH ` K ) ` W ) ` ( ( oc ` K ) ` ( `' ( ( DIsoH ` K ) ` W ) ` { .0. } ) ) ) = V ) |
23 |
10 22
|
eqtrd |
|- ( ( K e. HL /\ W e. H ) -> ( ._|_ ` { .0. } ) = V ) |