Metamath Proof Explorer


Theorem dochoc1

Description: The unit subspace (all vectors) is closed. (Contributed by NM, 16-Feb-2015)

Ref Expression
Hypotheses dochoc1.h H=LHypK
dochoc1.u U=DVecHKW
dochoc1.o ˙=ocHKW
dochoc1.v V=BaseU
dochoc1.k φKHLWH
Assertion dochoc1 φ˙˙V=V

Proof

Step Hyp Ref Expression
1 dochoc1.h H=LHypK
2 dochoc1.u U=DVecHKW
3 dochoc1.o ˙=ocHKW
4 dochoc1.v V=BaseU
5 dochoc1.k φKHLWH
6 eqid 0U=0U
7 1 2 3 4 6 doch1 KHLWH˙V=0U
8 7 fveq2d KHLWH˙˙V=˙0U
9 1 2 3 4 6 doch0 KHLWH˙0U=V
10 8 9 eqtrd KHLWH˙˙V=V
11 5 10 syl φ˙˙V=V