Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Construction of a vector space from a Hilbert lattice
dochoc1
Next ⟩
dochvalr2
Metamath Proof Explorer
Ascii
Unicode
Theorem
dochoc1
Description:
The unit subspace (all vectors) is closed.
(Contributed by
NM
, 16-Feb-2015)
Ref
Expression
Hypotheses
dochoc1.h
⊢
H
=
LHyp
⁡
K
dochoc1.u
⊢
U
=
DVecH
⁡
K
⁡
W
dochoc1.o
⊢
⊥
˙
=
ocH
⁡
K
⁡
W
dochoc1.v
⊢
V
=
Base
U
dochoc1.k
⊢
φ
→
K
∈
HL
∧
W
∈
H
Assertion
dochoc1
⊢
φ
→
⊥
˙
⁡
⊥
˙
⁡
V
=
V
Proof
Step
Hyp
Ref
Expression
1
dochoc1.h
⊢
H
=
LHyp
⁡
K
2
dochoc1.u
⊢
U
=
DVecH
⁡
K
⁡
W
3
dochoc1.o
⊢
⊥
˙
=
ocH
⁡
K
⁡
W
4
dochoc1.v
⊢
V
=
Base
U
5
dochoc1.k
⊢
φ
→
K
∈
HL
∧
W
∈
H
6
eqid
⊢
0
U
=
0
U
7
1
2
3
4
6
doch1
⊢
K
∈
HL
∧
W
∈
H
→
⊥
˙
⁡
V
=
0
U
8
7
fveq2d
⊢
K
∈
HL
∧
W
∈
H
→
⊥
˙
⁡
⊥
˙
⁡
V
=
⊥
˙
⁡
0
U
9
1
2
3
4
6
doch0
⊢
K
∈
HL
∧
W
∈
H
→
⊥
˙
⁡
0
U
=
V
10
8
9
eqtrd
⊢
K
∈
HL
∧
W
∈
H
→
⊥
˙
⁡
⊥
˙
⁡
V
=
V
11
5
10
syl
⊢
φ
→
⊥
˙
⁡
⊥
˙
⁡
V
=
V