Metamath Proof Explorer


Theorem dochoc1

Description: The unit subspace (all vectors) is closed. (Contributed by NM, 16-Feb-2015)

Ref Expression
Hypotheses dochoc1.h H = LHyp K
dochoc1.u U = DVecH K W
dochoc1.o ˙ = ocH K W
dochoc1.v V = Base U
dochoc1.k φ K HL W H
Assertion dochoc1 φ ˙ ˙ V = V

Proof

Step Hyp Ref Expression
1 dochoc1.h H = LHyp K
2 dochoc1.u U = DVecH K W
3 dochoc1.o ˙ = ocH K W
4 dochoc1.v V = Base U
5 dochoc1.k φ K HL W H
6 eqid 0 U = 0 U
7 1 2 3 4 6 doch1 K HL W H ˙ V = 0 U
8 7 fveq2d K HL W H ˙ ˙ V = ˙ 0 U
9 1 2 3 4 6 doch0 K HL W H ˙ 0 U = V
10 8 9 eqtrd K HL W H ˙ ˙ V = V
11 5 10 syl φ ˙ ˙ V = V