Metamath Proof Explorer


Theorem dochvalr2

Description: Orthocomplement of a closed subspace. (Contributed by NM, 21-Jul-2014)

Ref Expression
Hypotheses dochvalr2.b B = Base K
dochvalr2.o ˙ = oc K
dochvalr2.h H = LHyp K
dochvalr2.i I = DIsoH K W
dochvalr2.n N = ocH K W
Assertion dochvalr2 K HL W H X B N I X = I ˙ X

Proof

Step Hyp Ref Expression
1 dochvalr2.b B = Base K
2 dochvalr2.o ˙ = oc K
3 dochvalr2.h H = LHyp K
4 dochvalr2.i I = DIsoH K W
5 dochvalr2.n N = ocH K W
6 1 3 4 dihcl K HL W H X B I X ran I
7 2 3 4 5 dochvalr K HL W H I X ran I N I X = I ˙ I -1 I X
8 6 7 syldan K HL W H X B N I X = I ˙ I -1 I X
9 1 3 4 dihcnvid1 K HL W H X B I -1 I X = X
10 9 fveq2d K HL W H X B ˙ I -1 I X = ˙ X
11 10 fveq2d K HL W H X B I ˙ I -1 I X = I ˙ X
12 8 11 eqtrd K HL W H X B N I X = I ˙ X