Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Construction of a vector space from a Hilbert lattice
dochvalr2
Next ⟩
dochvalr3
Metamath Proof Explorer
Ascii
Unicode
Theorem
dochvalr2
Description:
Orthocomplement of a closed subspace.
(Contributed by
NM
, 21-Jul-2014)
Ref
Expression
Hypotheses
dochvalr2.b
⊢
B
=
Base
K
dochvalr2.o
⊢
⊥
˙
=
oc
⁡
K
dochvalr2.h
⊢
H
=
LHyp
⁡
K
dochvalr2.i
⊢
I
=
DIsoH
⁡
K
⁡
W
dochvalr2.n
⊢
N
=
ocH
⁡
K
⁡
W
Assertion
dochvalr2
⊢
K
∈
HL
∧
W
∈
H
∧
X
∈
B
→
N
⁡
I
⁡
X
=
I
⁡
⊥
˙
⁡
X
Proof
Step
Hyp
Ref
Expression
1
dochvalr2.b
⊢
B
=
Base
K
2
dochvalr2.o
⊢
⊥
˙
=
oc
⁡
K
3
dochvalr2.h
⊢
H
=
LHyp
⁡
K
4
dochvalr2.i
⊢
I
=
DIsoH
⁡
K
⁡
W
5
dochvalr2.n
⊢
N
=
ocH
⁡
K
⁡
W
6
1
3
4
dihcl
⊢
K
∈
HL
∧
W
∈
H
∧
X
∈
B
→
I
⁡
X
∈
ran
⁡
I
7
2
3
4
5
dochvalr
⊢
K
∈
HL
∧
W
∈
H
∧
I
⁡
X
∈
ran
⁡
I
→
N
⁡
I
⁡
X
=
I
⁡
⊥
˙
⁡
I
-1
⁡
I
⁡
X
8
6
7
syldan
⊢
K
∈
HL
∧
W
∈
H
∧
X
∈
B
→
N
⁡
I
⁡
X
=
I
⁡
⊥
˙
⁡
I
-1
⁡
I
⁡
X
9
1
3
4
dihcnvid1
⊢
K
∈
HL
∧
W
∈
H
∧
X
∈
B
→
I
-1
⁡
I
⁡
X
=
X
10
9
fveq2d
⊢
K
∈
HL
∧
W
∈
H
∧
X
∈
B
→
⊥
˙
⁡
I
-1
⁡
I
⁡
X
=
⊥
˙
⁡
X
11
10
fveq2d
⊢
K
∈
HL
∧
W
∈
H
∧
X
∈
B
→
I
⁡
⊥
˙
⁡
I
-1
⁡
I
⁡
X
=
I
⁡
⊥
˙
⁡
X
12
8
11
eqtrd
⊢
K
∈
HL
∧
W
∈
H
∧
X
∈
B
→
N
⁡
I
⁡
X
=
I
⁡
⊥
˙
⁡
X