Step |
Hyp |
Ref |
Expression |
1 |
|
dochvalr2.b |
|- B = ( Base ` K ) |
2 |
|
dochvalr2.o |
|- ._|_ = ( oc ` K ) |
3 |
|
dochvalr2.h |
|- H = ( LHyp ` K ) |
4 |
|
dochvalr2.i |
|- I = ( ( DIsoH ` K ) ` W ) |
5 |
|
dochvalr2.n |
|- N = ( ( ocH ` K ) ` W ) |
6 |
1 3 4
|
dihcl |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. B ) -> ( I ` X ) e. ran I ) |
7 |
2 3 4 5
|
dochvalr |
|- ( ( ( K e. HL /\ W e. H ) /\ ( I ` X ) e. ran I ) -> ( N ` ( I ` X ) ) = ( I ` ( ._|_ ` ( `' I ` ( I ` X ) ) ) ) ) |
8 |
6 7
|
syldan |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. B ) -> ( N ` ( I ` X ) ) = ( I ` ( ._|_ ` ( `' I ` ( I ` X ) ) ) ) ) |
9 |
1 3 4
|
dihcnvid1 |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. B ) -> ( `' I ` ( I ` X ) ) = X ) |
10 |
9
|
fveq2d |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. B ) -> ( ._|_ ` ( `' I ` ( I ` X ) ) ) = ( ._|_ ` X ) ) |
11 |
10
|
fveq2d |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. B ) -> ( I ` ( ._|_ ` ( `' I ` ( I ` X ) ) ) ) = ( I ` ( ._|_ ` X ) ) ) |
12 |
8 11
|
eqtrd |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. B ) -> ( N ` ( I ` X ) ) = ( I ` ( ._|_ ` X ) ) ) |