| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dochvalr3.o |
|- ._|_ = ( oc ` K ) |
| 2 |
|
dochvalr3.h |
|- H = ( LHyp ` K ) |
| 3 |
|
dochvalr3.i |
|- I = ( ( DIsoH ` K ) ` W ) |
| 4 |
|
dochvalr3.n |
|- N = ( ( ocH ` K ) ` W ) |
| 5 |
|
dochvalr3.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
| 6 |
|
dochvalr3.x |
|- ( ph -> X e. ran I ) |
| 7 |
|
eqid |
|- ( ( DVecH ` K ) ` W ) = ( ( DVecH ` K ) ` W ) |
| 8 |
|
eqid |
|- ( Base ` ( ( DVecH ` K ) ` W ) ) = ( Base ` ( ( DVecH ` K ) ` W ) ) |
| 9 |
2 7 3 8
|
dihrnss |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. ran I ) -> X C_ ( Base ` ( ( DVecH ` K ) ` W ) ) ) |
| 10 |
5 6 9
|
syl2anc |
|- ( ph -> X C_ ( Base ` ( ( DVecH ` K ) ` W ) ) ) |
| 11 |
2 3 7 8 4
|
dochcl |
|- ( ( ( K e. HL /\ W e. H ) /\ X C_ ( Base ` ( ( DVecH ` K ) ` W ) ) ) -> ( N ` X ) e. ran I ) |
| 12 |
5 10 11
|
syl2anc |
|- ( ph -> ( N ` X ) e. ran I ) |
| 13 |
2 3
|
dihcnvid2 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( N ` X ) e. ran I ) -> ( I ` ( `' I ` ( N ` X ) ) ) = ( N ` X ) ) |
| 14 |
5 12 13
|
syl2anc |
|- ( ph -> ( I ` ( `' I ` ( N ` X ) ) ) = ( N ` X ) ) |
| 15 |
1 2 3 4
|
dochvalr |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. ran I ) -> ( N ` X ) = ( I ` ( ._|_ ` ( `' I ` X ) ) ) ) |
| 16 |
5 6 15
|
syl2anc |
|- ( ph -> ( N ` X ) = ( I ` ( ._|_ ` ( `' I ` X ) ) ) ) |
| 17 |
14 16
|
eqtr2d |
|- ( ph -> ( I ` ( ._|_ ` ( `' I ` X ) ) ) = ( I ` ( `' I ` ( N ` X ) ) ) ) |
| 18 |
5
|
simpld |
|- ( ph -> K e. HL ) |
| 19 |
|
hlop |
|- ( K e. HL -> K e. OP ) |
| 20 |
18 19
|
syl |
|- ( ph -> K e. OP ) |
| 21 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
| 22 |
21 2 3
|
dihcnvcl |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. ran I ) -> ( `' I ` X ) e. ( Base ` K ) ) |
| 23 |
5 6 22
|
syl2anc |
|- ( ph -> ( `' I ` X ) e. ( Base ` K ) ) |
| 24 |
21 1
|
opoccl |
|- ( ( K e. OP /\ ( `' I ` X ) e. ( Base ` K ) ) -> ( ._|_ ` ( `' I ` X ) ) e. ( Base ` K ) ) |
| 25 |
20 23 24
|
syl2anc |
|- ( ph -> ( ._|_ ` ( `' I ` X ) ) e. ( Base ` K ) ) |
| 26 |
21 2 3
|
dihcnvcl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( N ` X ) e. ran I ) -> ( `' I ` ( N ` X ) ) e. ( Base ` K ) ) |
| 27 |
5 12 26
|
syl2anc |
|- ( ph -> ( `' I ` ( N ` X ) ) e. ( Base ` K ) ) |
| 28 |
21 2 3
|
dih11 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ._|_ ` ( `' I ` X ) ) e. ( Base ` K ) /\ ( `' I ` ( N ` X ) ) e. ( Base ` K ) ) -> ( ( I ` ( ._|_ ` ( `' I ` X ) ) ) = ( I ` ( `' I ` ( N ` X ) ) ) <-> ( ._|_ ` ( `' I ` X ) ) = ( `' I ` ( N ` X ) ) ) ) |
| 29 |
5 25 27 28
|
syl3anc |
|- ( ph -> ( ( I ` ( ._|_ ` ( `' I ` X ) ) ) = ( I ` ( `' I ` ( N ` X ) ) ) <-> ( ._|_ ` ( `' I ` X ) ) = ( `' I ` ( N ` X ) ) ) ) |
| 30 |
17 29
|
mpbid |
|- ( ph -> ( ._|_ ` ( `' I ` X ) ) = ( `' I ` ( N ` X ) ) ) |