Step |
Hyp |
Ref |
Expression |
1 |
|
dochvalr3.o |
|- ._|_ = ( oc ` K ) |
2 |
|
dochvalr3.h |
|- H = ( LHyp ` K ) |
3 |
|
dochvalr3.i |
|- I = ( ( DIsoH ` K ) ` W ) |
4 |
|
dochvalr3.n |
|- N = ( ( ocH ` K ) ` W ) |
5 |
|
dochvalr3.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
6 |
|
dochvalr3.x |
|- ( ph -> X e. ran I ) |
7 |
|
eqid |
|- ( ( DVecH ` K ) ` W ) = ( ( DVecH ` K ) ` W ) |
8 |
|
eqid |
|- ( Base ` ( ( DVecH ` K ) ` W ) ) = ( Base ` ( ( DVecH ` K ) ` W ) ) |
9 |
2 7 3 8
|
dihrnss |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. ran I ) -> X C_ ( Base ` ( ( DVecH ` K ) ` W ) ) ) |
10 |
5 6 9
|
syl2anc |
|- ( ph -> X C_ ( Base ` ( ( DVecH ` K ) ` W ) ) ) |
11 |
2 3 7 8 4
|
dochcl |
|- ( ( ( K e. HL /\ W e. H ) /\ X C_ ( Base ` ( ( DVecH ` K ) ` W ) ) ) -> ( N ` X ) e. ran I ) |
12 |
5 10 11
|
syl2anc |
|- ( ph -> ( N ` X ) e. ran I ) |
13 |
2 3
|
dihcnvid2 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( N ` X ) e. ran I ) -> ( I ` ( `' I ` ( N ` X ) ) ) = ( N ` X ) ) |
14 |
5 12 13
|
syl2anc |
|- ( ph -> ( I ` ( `' I ` ( N ` X ) ) ) = ( N ` X ) ) |
15 |
1 2 3 4
|
dochvalr |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. ran I ) -> ( N ` X ) = ( I ` ( ._|_ ` ( `' I ` X ) ) ) ) |
16 |
5 6 15
|
syl2anc |
|- ( ph -> ( N ` X ) = ( I ` ( ._|_ ` ( `' I ` X ) ) ) ) |
17 |
14 16
|
eqtr2d |
|- ( ph -> ( I ` ( ._|_ ` ( `' I ` X ) ) ) = ( I ` ( `' I ` ( N ` X ) ) ) ) |
18 |
5
|
simpld |
|- ( ph -> K e. HL ) |
19 |
|
hlop |
|- ( K e. HL -> K e. OP ) |
20 |
18 19
|
syl |
|- ( ph -> K e. OP ) |
21 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
22 |
21 2 3
|
dihcnvcl |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. ran I ) -> ( `' I ` X ) e. ( Base ` K ) ) |
23 |
5 6 22
|
syl2anc |
|- ( ph -> ( `' I ` X ) e. ( Base ` K ) ) |
24 |
21 1
|
opoccl |
|- ( ( K e. OP /\ ( `' I ` X ) e. ( Base ` K ) ) -> ( ._|_ ` ( `' I ` X ) ) e. ( Base ` K ) ) |
25 |
20 23 24
|
syl2anc |
|- ( ph -> ( ._|_ ` ( `' I ` X ) ) e. ( Base ` K ) ) |
26 |
21 2 3
|
dihcnvcl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( N ` X ) e. ran I ) -> ( `' I ` ( N ` X ) ) e. ( Base ` K ) ) |
27 |
5 12 26
|
syl2anc |
|- ( ph -> ( `' I ` ( N ` X ) ) e. ( Base ` K ) ) |
28 |
21 2 3
|
dih11 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ._|_ ` ( `' I ` X ) ) e. ( Base ` K ) /\ ( `' I ` ( N ` X ) ) e. ( Base ` K ) ) -> ( ( I ` ( ._|_ ` ( `' I ` X ) ) ) = ( I ` ( `' I ` ( N ` X ) ) ) <-> ( ._|_ ` ( `' I ` X ) ) = ( `' I ` ( N ` X ) ) ) ) |
29 |
5 25 27 28
|
syl3anc |
|- ( ph -> ( ( I ` ( ._|_ ` ( `' I ` X ) ) ) = ( I ` ( `' I ` ( N ` X ) ) ) <-> ( ._|_ ` ( `' I ` X ) ) = ( `' I ` ( N ` X ) ) ) ) |
30 |
17 29
|
mpbid |
|- ( ph -> ( ._|_ ` ( `' I ` X ) ) = ( `' I ` ( N ` X ) ) ) |