Metamath Proof Explorer


Theorem dochvalr3

Description: Orthocomplement of a closed subspace. (Contributed by NM, 15-Jan-2015)

Ref Expression
Hypotheses dochvalr3.o ˙ = oc K
dochvalr3.h H = LHyp K
dochvalr3.i I = DIsoH K W
dochvalr3.n N = ocH K W
dochvalr3.k φ K HL W H
dochvalr3.x φ X ran I
Assertion dochvalr3 φ ˙ I -1 X = I -1 N X

Proof

Step Hyp Ref Expression
1 dochvalr3.o ˙ = oc K
2 dochvalr3.h H = LHyp K
3 dochvalr3.i I = DIsoH K W
4 dochvalr3.n N = ocH K W
5 dochvalr3.k φ K HL W H
6 dochvalr3.x φ X ran I
7 eqid DVecH K W = DVecH K W
8 eqid Base DVecH K W = Base DVecH K W
9 2 7 3 8 dihrnss K HL W H X ran I X Base DVecH K W
10 5 6 9 syl2anc φ X Base DVecH K W
11 2 3 7 8 4 dochcl K HL W H X Base DVecH K W N X ran I
12 5 10 11 syl2anc φ N X ran I
13 2 3 dihcnvid2 K HL W H N X ran I I I -1 N X = N X
14 5 12 13 syl2anc φ I I -1 N X = N X
15 1 2 3 4 dochvalr K HL W H X ran I N X = I ˙ I -1 X
16 5 6 15 syl2anc φ N X = I ˙ I -1 X
17 14 16 eqtr2d φ I ˙ I -1 X = I I -1 N X
18 5 simpld φ K HL
19 hlop K HL K OP
20 18 19 syl φ K OP
21 eqid Base K = Base K
22 21 2 3 dihcnvcl K HL W H X ran I I -1 X Base K
23 5 6 22 syl2anc φ I -1 X Base K
24 21 1 opoccl K OP I -1 X Base K ˙ I -1 X Base K
25 20 23 24 syl2anc φ ˙ I -1 X Base K
26 21 2 3 dihcnvcl K HL W H N X ran I I -1 N X Base K
27 5 12 26 syl2anc φ I -1 N X Base K
28 21 2 3 dih11 K HL W H ˙ I -1 X Base K I -1 N X Base K I ˙ I -1 X = I I -1 N X ˙ I -1 X = I -1 N X
29 5 25 27 28 syl3anc φ I ˙ I -1 X = I I -1 N X ˙ I -1 X = I -1 N X
30 17 29 mpbid φ ˙ I -1 X = I -1 N X