Metamath Proof Explorer


Theorem dochvalr3

Description: Orthocomplement of a closed subspace. (Contributed by NM, 15-Jan-2015)

Ref Expression
Hypotheses dochvalr3.o ˙=ocK
dochvalr3.h H=LHypK
dochvalr3.i I=DIsoHKW
dochvalr3.n N=ocHKW
dochvalr3.k φKHLWH
dochvalr3.x φXranI
Assertion dochvalr3 φ˙I-1X=I-1NX

Proof

Step Hyp Ref Expression
1 dochvalr3.o ˙=ocK
2 dochvalr3.h H=LHypK
3 dochvalr3.i I=DIsoHKW
4 dochvalr3.n N=ocHKW
5 dochvalr3.k φKHLWH
6 dochvalr3.x φXranI
7 eqid DVecHKW=DVecHKW
8 eqid BaseDVecHKW=BaseDVecHKW
9 2 7 3 8 dihrnss KHLWHXranIXBaseDVecHKW
10 5 6 9 syl2anc φXBaseDVecHKW
11 2 3 7 8 4 dochcl KHLWHXBaseDVecHKWNXranI
12 5 10 11 syl2anc φNXranI
13 2 3 dihcnvid2 KHLWHNXranIII-1NX=NX
14 5 12 13 syl2anc φII-1NX=NX
15 1 2 3 4 dochvalr KHLWHXranINX=I˙I-1X
16 5 6 15 syl2anc φNX=I˙I-1X
17 14 16 eqtr2d φI˙I-1X=II-1NX
18 5 simpld φKHL
19 hlop KHLKOP
20 18 19 syl φKOP
21 eqid BaseK=BaseK
22 21 2 3 dihcnvcl KHLWHXranII-1XBaseK
23 5 6 22 syl2anc φI-1XBaseK
24 21 1 opoccl KOPI-1XBaseK˙I-1XBaseK
25 20 23 24 syl2anc φ˙I-1XBaseK
26 21 2 3 dihcnvcl KHLWHNXranII-1NXBaseK
27 5 12 26 syl2anc φI-1NXBaseK
28 21 2 3 dih11 KHLWH˙I-1XBaseKI-1NXBaseKI˙I-1X=II-1NX˙I-1X=I-1NX
29 5 25 27 28 syl3anc φI˙I-1X=II-1NX˙I-1X=I-1NX
30 17 29 mpbid φ˙I-1X=I-1NX