Metamath Proof Explorer


Theorem doch2val2

Description: Double orthocomplement for DVecH vector space. (Contributed by NM, 26-Jul-2014)

Ref Expression
Hypotheses doch2val2.h H=LHypK
doch2val2.i I=DIsoHKW
doch2val2.u U=DVecHKW
doch2val2.v V=BaseU
doch2val2.o ˙=ocHKW
doch2val2.k φKHLWH
doch2val2.x φXV
Assertion doch2val2 φ˙˙X=zranI|Xz

Proof

Step Hyp Ref Expression
1 doch2val2.h H=LHypK
2 doch2val2.i I=DIsoHKW
3 doch2val2.u U=DVecHKW
4 doch2val2.v V=BaseU
5 doch2val2.o ˙=ocHKW
6 doch2val2.k φKHLWH
7 doch2val2.x φXV
8 eqid ocK=ocK
9 8 1 2 3 4 5 dochval2 KHLWHXV˙X=IocKI-1zranI|Xz
10 6 7 9 syl2anc φ˙X=IocKI-1zranI|Xz
11 10 fveq2d φ˙˙X=˙IocKI-1zranI|Xz
12 6 simpld φKHL
13 hlop KHLKOP
14 12 13 syl φKOP
15 ssrab2 zranI|XzranI
16 15 a1i φzranI|XzranI
17 1 2 3 4 dih1rn KHLWHVranI
18 6 17 syl φVranI
19 sseq2 z=VXzXV
20 19 elrab VzranI|XzVranIXV
21 18 7 20 sylanbrc φVzranI|Xz
22 21 ne0d φzranI|Xz
23 1 2 dihintcl KHLWHzranI|XzranIzranI|XzzranI|XzranI
24 6 16 22 23 syl12anc φzranI|XzranI
25 eqid BaseK=BaseK
26 25 1 2 dihcnvcl KHLWHzranI|XzranII-1zranI|XzBaseK
27 6 24 26 syl2anc φI-1zranI|XzBaseK
28 25 8 opoccl KOPI-1zranI|XzBaseKocKI-1zranI|XzBaseK
29 14 27 28 syl2anc φocKI-1zranI|XzBaseK
30 25 8 1 2 5 dochvalr2 KHLWHocKI-1zranI|XzBaseK˙IocKI-1zranI|Xz=IocKocKI-1zranI|Xz
31 6 29 30 syl2anc φ˙IocKI-1zranI|Xz=IocKocKI-1zranI|Xz
32 25 8 opococ KOPI-1zranI|XzBaseKocKocKI-1zranI|Xz=I-1zranI|Xz
33 14 27 32 syl2anc φocKocKI-1zranI|Xz=I-1zranI|Xz
34 33 fveq2d φIocKocKI-1zranI|Xz=II-1zranI|Xz
35 1 2 dihcnvid2 KHLWHzranI|XzranIII-1zranI|Xz=zranI|Xz
36 6 24 35 syl2anc φII-1zranI|Xz=zranI|Xz
37 34 36 eqtrd φIocKocKI-1zranI|Xz=zranI|Xz
38 11 31 37 3eqtrd φ˙˙X=zranI|Xz