Step |
Hyp |
Ref |
Expression |
1 |
|
doch2val2.h |
|- H = ( LHyp ` K ) |
2 |
|
doch2val2.i |
|- I = ( ( DIsoH ` K ) ` W ) |
3 |
|
doch2val2.u |
|- U = ( ( DVecH ` K ) ` W ) |
4 |
|
doch2val2.v |
|- V = ( Base ` U ) |
5 |
|
doch2val2.o |
|- ._|_ = ( ( ocH ` K ) ` W ) |
6 |
|
doch2val2.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
7 |
|
doch2val2.x |
|- ( ph -> X C_ V ) |
8 |
|
eqid |
|- ( oc ` K ) = ( oc ` K ) |
9 |
8 1 2 3 4 5
|
dochval2 |
|- ( ( ( K e. HL /\ W e. H ) /\ X C_ V ) -> ( ._|_ ` X ) = ( I ` ( ( oc ` K ) ` ( `' I ` |^| { z e. ran I | X C_ z } ) ) ) ) |
10 |
6 7 9
|
syl2anc |
|- ( ph -> ( ._|_ ` X ) = ( I ` ( ( oc ` K ) ` ( `' I ` |^| { z e. ran I | X C_ z } ) ) ) ) |
11 |
10
|
fveq2d |
|- ( ph -> ( ._|_ ` ( ._|_ ` X ) ) = ( ._|_ ` ( I ` ( ( oc ` K ) ` ( `' I ` |^| { z e. ran I | X C_ z } ) ) ) ) ) |
12 |
6
|
simpld |
|- ( ph -> K e. HL ) |
13 |
|
hlop |
|- ( K e. HL -> K e. OP ) |
14 |
12 13
|
syl |
|- ( ph -> K e. OP ) |
15 |
|
ssrab2 |
|- { z e. ran I | X C_ z } C_ ran I |
16 |
15
|
a1i |
|- ( ph -> { z e. ran I | X C_ z } C_ ran I ) |
17 |
1 2 3 4
|
dih1rn |
|- ( ( K e. HL /\ W e. H ) -> V e. ran I ) |
18 |
6 17
|
syl |
|- ( ph -> V e. ran I ) |
19 |
|
sseq2 |
|- ( z = V -> ( X C_ z <-> X C_ V ) ) |
20 |
19
|
elrab |
|- ( V e. { z e. ran I | X C_ z } <-> ( V e. ran I /\ X C_ V ) ) |
21 |
18 7 20
|
sylanbrc |
|- ( ph -> V e. { z e. ran I | X C_ z } ) |
22 |
21
|
ne0d |
|- ( ph -> { z e. ran I | X C_ z } =/= (/) ) |
23 |
1 2
|
dihintcl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( { z e. ran I | X C_ z } C_ ran I /\ { z e. ran I | X C_ z } =/= (/) ) ) -> |^| { z e. ran I | X C_ z } e. ran I ) |
24 |
6 16 22 23
|
syl12anc |
|- ( ph -> |^| { z e. ran I | X C_ z } e. ran I ) |
25 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
26 |
25 1 2
|
dihcnvcl |
|- ( ( ( K e. HL /\ W e. H ) /\ |^| { z e. ran I | X C_ z } e. ran I ) -> ( `' I ` |^| { z e. ran I | X C_ z } ) e. ( Base ` K ) ) |
27 |
6 24 26
|
syl2anc |
|- ( ph -> ( `' I ` |^| { z e. ran I | X C_ z } ) e. ( Base ` K ) ) |
28 |
25 8
|
opoccl |
|- ( ( K e. OP /\ ( `' I ` |^| { z e. ran I | X C_ z } ) e. ( Base ` K ) ) -> ( ( oc ` K ) ` ( `' I ` |^| { z e. ran I | X C_ z } ) ) e. ( Base ` K ) ) |
29 |
14 27 28
|
syl2anc |
|- ( ph -> ( ( oc ` K ) ` ( `' I ` |^| { z e. ran I | X C_ z } ) ) e. ( Base ` K ) ) |
30 |
25 8 1 2 5
|
dochvalr2 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( oc ` K ) ` ( `' I ` |^| { z e. ran I | X C_ z } ) ) e. ( Base ` K ) ) -> ( ._|_ ` ( I ` ( ( oc ` K ) ` ( `' I ` |^| { z e. ran I | X C_ z } ) ) ) ) = ( I ` ( ( oc ` K ) ` ( ( oc ` K ) ` ( `' I ` |^| { z e. ran I | X C_ z } ) ) ) ) ) |
31 |
6 29 30
|
syl2anc |
|- ( ph -> ( ._|_ ` ( I ` ( ( oc ` K ) ` ( `' I ` |^| { z e. ran I | X C_ z } ) ) ) ) = ( I ` ( ( oc ` K ) ` ( ( oc ` K ) ` ( `' I ` |^| { z e. ran I | X C_ z } ) ) ) ) ) |
32 |
25 8
|
opococ |
|- ( ( K e. OP /\ ( `' I ` |^| { z e. ran I | X C_ z } ) e. ( Base ` K ) ) -> ( ( oc ` K ) ` ( ( oc ` K ) ` ( `' I ` |^| { z e. ran I | X C_ z } ) ) ) = ( `' I ` |^| { z e. ran I | X C_ z } ) ) |
33 |
14 27 32
|
syl2anc |
|- ( ph -> ( ( oc ` K ) ` ( ( oc ` K ) ` ( `' I ` |^| { z e. ran I | X C_ z } ) ) ) = ( `' I ` |^| { z e. ran I | X C_ z } ) ) |
34 |
33
|
fveq2d |
|- ( ph -> ( I ` ( ( oc ` K ) ` ( ( oc ` K ) ` ( `' I ` |^| { z e. ran I | X C_ z } ) ) ) ) = ( I ` ( `' I ` |^| { z e. ran I | X C_ z } ) ) ) |
35 |
1 2
|
dihcnvid2 |
|- ( ( ( K e. HL /\ W e. H ) /\ |^| { z e. ran I | X C_ z } e. ran I ) -> ( I ` ( `' I ` |^| { z e. ran I | X C_ z } ) ) = |^| { z e. ran I | X C_ z } ) |
36 |
6 24 35
|
syl2anc |
|- ( ph -> ( I ` ( `' I ` |^| { z e. ran I | X C_ z } ) ) = |^| { z e. ran I | X C_ z } ) |
37 |
34 36
|
eqtrd |
|- ( ph -> ( I ` ( ( oc ` K ) ` ( ( oc ` K ) ` ( `' I ` |^| { z e. ran I | X C_ z } ) ) ) ) = |^| { z e. ran I | X C_ z } ) |
38 |
11 31 37
|
3eqtrd |
|- ( ph -> ( ._|_ ` ( ._|_ ` X ) ) = |^| { z e. ran I | X C_ z } ) |