Step |
Hyp |
Ref |
Expression |
1 |
|
dochss.h |
|- H = ( LHyp ` K ) |
2 |
|
dochss.u |
|- U = ( ( DVecH ` K ) ` W ) |
3 |
|
dochss.v |
|- V = ( Base ` U ) |
4 |
|
dochss.o |
|- ._|_ = ( ( ocH ` K ) ` W ) |
5 |
|
simp1l |
|- ( ( ( K e. HL /\ W e. H ) /\ Y C_ V /\ X C_ Y ) -> K e. HL ) |
6 |
|
hlclat |
|- ( K e. HL -> K e. CLat ) |
7 |
5 6
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ Y C_ V /\ X C_ Y ) -> K e. CLat ) |
8 |
|
ssrab2 |
|- { z e. ( Base ` K ) | X C_ ( ( ( DIsoH ` K ) ` W ) ` z ) } C_ ( Base ` K ) |
9 |
8
|
a1i |
|- ( ( ( K e. HL /\ W e. H ) /\ Y C_ V /\ X C_ Y ) -> { z e. ( Base ` K ) | X C_ ( ( ( DIsoH ` K ) ` W ) ` z ) } C_ ( Base ` K ) ) |
10 |
|
simpll3 |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ Y C_ V /\ X C_ Y ) /\ z e. ( Base ` K ) ) /\ Y C_ ( ( ( DIsoH ` K ) ` W ) ` z ) ) -> X C_ Y ) |
11 |
|
simpr |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ Y C_ V /\ X C_ Y ) /\ z e. ( Base ` K ) ) /\ Y C_ ( ( ( DIsoH ` K ) ` W ) ` z ) ) -> Y C_ ( ( ( DIsoH ` K ) ` W ) ` z ) ) |
12 |
10 11
|
sstrd |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ Y C_ V /\ X C_ Y ) /\ z e. ( Base ` K ) ) /\ Y C_ ( ( ( DIsoH ` K ) ` W ) ` z ) ) -> X C_ ( ( ( DIsoH ` K ) ` W ) ` z ) ) |
13 |
12
|
ex |
|- ( ( ( ( K e. HL /\ W e. H ) /\ Y C_ V /\ X C_ Y ) /\ z e. ( Base ` K ) ) -> ( Y C_ ( ( ( DIsoH ` K ) ` W ) ` z ) -> X C_ ( ( ( DIsoH ` K ) ` W ) ` z ) ) ) |
14 |
13
|
ss2rabdv |
|- ( ( ( K e. HL /\ W e. H ) /\ Y C_ V /\ X C_ Y ) -> { z e. ( Base ` K ) | Y C_ ( ( ( DIsoH ` K ) ` W ) ` z ) } C_ { z e. ( Base ` K ) | X C_ ( ( ( DIsoH ` K ) ` W ) ` z ) } ) |
15 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
16 |
|
eqid |
|- ( le ` K ) = ( le ` K ) |
17 |
|
eqid |
|- ( glb ` K ) = ( glb ` K ) |
18 |
15 16 17
|
clatglbss |
|- ( ( K e. CLat /\ { z e. ( Base ` K ) | X C_ ( ( ( DIsoH ` K ) ` W ) ` z ) } C_ ( Base ` K ) /\ { z e. ( Base ` K ) | Y C_ ( ( ( DIsoH ` K ) ` W ) ` z ) } C_ { z e. ( Base ` K ) | X C_ ( ( ( DIsoH ` K ) ` W ) ` z ) } ) -> ( ( glb ` K ) ` { z e. ( Base ` K ) | X C_ ( ( ( DIsoH ` K ) ` W ) ` z ) } ) ( le ` K ) ( ( glb ` K ) ` { z e. ( Base ` K ) | Y C_ ( ( ( DIsoH ` K ) ` W ) ` z ) } ) ) |
19 |
7 9 14 18
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ Y C_ V /\ X C_ Y ) -> ( ( glb ` K ) ` { z e. ( Base ` K ) | X C_ ( ( ( DIsoH ` K ) ` W ) ` z ) } ) ( le ` K ) ( ( glb ` K ) ` { z e. ( Base ` K ) | Y C_ ( ( ( DIsoH ` K ) ` W ) ` z ) } ) ) |
20 |
|
hlop |
|- ( K e. HL -> K e. OP ) |
21 |
5 20
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ Y C_ V /\ X C_ Y ) -> K e. OP ) |
22 |
15 17
|
clatglbcl |
|- ( ( K e. CLat /\ { z e. ( Base ` K ) | X C_ ( ( ( DIsoH ` K ) ` W ) ` z ) } C_ ( Base ` K ) ) -> ( ( glb ` K ) ` { z e. ( Base ` K ) | X C_ ( ( ( DIsoH ` K ) ` W ) ` z ) } ) e. ( Base ` K ) ) |
23 |
7 8 22
|
sylancl |
|- ( ( ( K e. HL /\ W e. H ) /\ Y C_ V /\ X C_ Y ) -> ( ( glb ` K ) ` { z e. ( Base ` K ) | X C_ ( ( ( DIsoH ` K ) ` W ) ` z ) } ) e. ( Base ` K ) ) |
24 |
|
ssrab2 |
|- { z e. ( Base ` K ) | Y C_ ( ( ( DIsoH ` K ) ` W ) ` z ) } C_ ( Base ` K ) |
25 |
15 17
|
clatglbcl |
|- ( ( K e. CLat /\ { z e. ( Base ` K ) | Y C_ ( ( ( DIsoH ` K ) ` W ) ` z ) } C_ ( Base ` K ) ) -> ( ( glb ` K ) ` { z e. ( Base ` K ) | Y C_ ( ( ( DIsoH ` K ) ` W ) ` z ) } ) e. ( Base ` K ) ) |
26 |
7 24 25
|
sylancl |
|- ( ( ( K e. HL /\ W e. H ) /\ Y C_ V /\ X C_ Y ) -> ( ( glb ` K ) ` { z e. ( Base ` K ) | Y C_ ( ( ( DIsoH ` K ) ` W ) ` z ) } ) e. ( Base ` K ) ) |
27 |
|
eqid |
|- ( oc ` K ) = ( oc ` K ) |
28 |
15 16 27
|
oplecon3b |
|- ( ( K e. OP /\ ( ( glb ` K ) ` { z e. ( Base ` K ) | X C_ ( ( ( DIsoH ` K ) ` W ) ` z ) } ) e. ( Base ` K ) /\ ( ( glb ` K ) ` { z e. ( Base ` K ) | Y C_ ( ( ( DIsoH ` K ) ` W ) ` z ) } ) e. ( Base ` K ) ) -> ( ( ( glb ` K ) ` { z e. ( Base ` K ) | X C_ ( ( ( DIsoH ` K ) ` W ) ` z ) } ) ( le ` K ) ( ( glb ` K ) ` { z e. ( Base ` K ) | Y C_ ( ( ( DIsoH ` K ) ` W ) ` z ) } ) <-> ( ( oc ` K ) ` ( ( glb ` K ) ` { z e. ( Base ` K ) | Y C_ ( ( ( DIsoH ` K ) ` W ) ` z ) } ) ) ( le ` K ) ( ( oc ` K ) ` ( ( glb ` K ) ` { z e. ( Base ` K ) | X C_ ( ( ( DIsoH ` K ) ` W ) ` z ) } ) ) ) ) |
29 |
21 23 26 28
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ Y C_ V /\ X C_ Y ) -> ( ( ( glb ` K ) ` { z e. ( Base ` K ) | X C_ ( ( ( DIsoH ` K ) ` W ) ` z ) } ) ( le ` K ) ( ( glb ` K ) ` { z e. ( Base ` K ) | Y C_ ( ( ( DIsoH ` K ) ` W ) ` z ) } ) <-> ( ( oc ` K ) ` ( ( glb ` K ) ` { z e. ( Base ` K ) | Y C_ ( ( ( DIsoH ` K ) ` W ) ` z ) } ) ) ( le ` K ) ( ( oc ` K ) ` ( ( glb ` K ) ` { z e. ( Base ` K ) | X C_ ( ( ( DIsoH ` K ) ` W ) ` z ) } ) ) ) ) |
30 |
19 29
|
mpbid |
|- ( ( ( K e. HL /\ W e. H ) /\ Y C_ V /\ X C_ Y ) -> ( ( oc ` K ) ` ( ( glb ` K ) ` { z e. ( Base ` K ) | Y C_ ( ( ( DIsoH ` K ) ` W ) ` z ) } ) ) ( le ` K ) ( ( oc ` K ) ` ( ( glb ` K ) ` { z e. ( Base ` K ) | X C_ ( ( ( DIsoH ` K ) ` W ) ` z ) } ) ) ) |
31 |
|
simp1 |
|- ( ( ( K e. HL /\ W e. H ) /\ Y C_ V /\ X C_ Y ) -> ( K e. HL /\ W e. H ) ) |
32 |
15 27
|
opoccl |
|- ( ( K e. OP /\ ( ( glb ` K ) ` { z e. ( Base ` K ) | Y C_ ( ( ( DIsoH ` K ) ` W ) ` z ) } ) e. ( Base ` K ) ) -> ( ( oc ` K ) ` ( ( glb ` K ) ` { z e. ( Base ` K ) | Y C_ ( ( ( DIsoH ` K ) ` W ) ` z ) } ) ) e. ( Base ` K ) ) |
33 |
21 26 32
|
syl2anc |
|- ( ( ( K e. HL /\ W e. H ) /\ Y C_ V /\ X C_ Y ) -> ( ( oc ` K ) ` ( ( glb ` K ) ` { z e. ( Base ` K ) | Y C_ ( ( ( DIsoH ` K ) ` W ) ` z ) } ) ) e. ( Base ` K ) ) |
34 |
15 27
|
opoccl |
|- ( ( K e. OP /\ ( ( glb ` K ) ` { z e. ( Base ` K ) | X C_ ( ( ( DIsoH ` K ) ` W ) ` z ) } ) e. ( Base ` K ) ) -> ( ( oc ` K ) ` ( ( glb ` K ) ` { z e. ( Base ` K ) | X C_ ( ( ( DIsoH ` K ) ` W ) ` z ) } ) ) e. ( Base ` K ) ) |
35 |
21 23 34
|
syl2anc |
|- ( ( ( K e. HL /\ W e. H ) /\ Y C_ V /\ X C_ Y ) -> ( ( oc ` K ) ` ( ( glb ` K ) ` { z e. ( Base ` K ) | X C_ ( ( ( DIsoH ` K ) ` W ) ` z ) } ) ) e. ( Base ` K ) ) |
36 |
|
eqid |
|- ( ( DIsoH ` K ) ` W ) = ( ( DIsoH ` K ) ` W ) |
37 |
15 16 1 36
|
dihord |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( oc ` K ) ` ( ( glb ` K ) ` { z e. ( Base ` K ) | Y C_ ( ( ( DIsoH ` K ) ` W ) ` z ) } ) ) e. ( Base ` K ) /\ ( ( oc ` K ) ` ( ( glb ` K ) ` { z e. ( Base ` K ) | X C_ ( ( ( DIsoH ` K ) ` W ) ` z ) } ) ) e. ( Base ` K ) ) -> ( ( ( ( DIsoH ` K ) ` W ) ` ( ( oc ` K ) ` ( ( glb ` K ) ` { z e. ( Base ` K ) | Y C_ ( ( ( DIsoH ` K ) ` W ) ` z ) } ) ) ) C_ ( ( ( DIsoH ` K ) ` W ) ` ( ( oc ` K ) ` ( ( glb ` K ) ` { z e. ( Base ` K ) | X C_ ( ( ( DIsoH ` K ) ` W ) ` z ) } ) ) ) <-> ( ( oc ` K ) ` ( ( glb ` K ) ` { z e. ( Base ` K ) | Y C_ ( ( ( DIsoH ` K ) ` W ) ` z ) } ) ) ( le ` K ) ( ( oc ` K ) ` ( ( glb ` K ) ` { z e. ( Base ` K ) | X C_ ( ( ( DIsoH ` K ) ` W ) ` z ) } ) ) ) ) |
38 |
31 33 35 37
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ Y C_ V /\ X C_ Y ) -> ( ( ( ( DIsoH ` K ) ` W ) ` ( ( oc ` K ) ` ( ( glb ` K ) ` { z e. ( Base ` K ) | Y C_ ( ( ( DIsoH ` K ) ` W ) ` z ) } ) ) ) C_ ( ( ( DIsoH ` K ) ` W ) ` ( ( oc ` K ) ` ( ( glb ` K ) ` { z e. ( Base ` K ) | X C_ ( ( ( DIsoH ` K ) ` W ) ` z ) } ) ) ) <-> ( ( oc ` K ) ` ( ( glb ` K ) ` { z e. ( Base ` K ) | Y C_ ( ( ( DIsoH ` K ) ` W ) ` z ) } ) ) ( le ` K ) ( ( oc ` K ) ` ( ( glb ` K ) ` { z e. ( Base ` K ) | X C_ ( ( ( DIsoH ` K ) ` W ) ` z ) } ) ) ) ) |
39 |
30 38
|
mpbird |
|- ( ( ( K e. HL /\ W e. H ) /\ Y C_ V /\ X C_ Y ) -> ( ( ( DIsoH ` K ) ` W ) ` ( ( oc ` K ) ` ( ( glb ` K ) ` { z e. ( Base ` K ) | Y C_ ( ( ( DIsoH ` K ) ` W ) ` z ) } ) ) ) C_ ( ( ( DIsoH ` K ) ` W ) ` ( ( oc ` K ) ` ( ( glb ` K ) ` { z e. ( Base ` K ) | X C_ ( ( ( DIsoH ` K ) ` W ) ` z ) } ) ) ) ) |
40 |
15 17 27 1 36 2 3 4
|
dochval |
|- ( ( ( K e. HL /\ W e. H ) /\ Y C_ V ) -> ( ._|_ ` Y ) = ( ( ( DIsoH ` K ) ` W ) ` ( ( oc ` K ) ` ( ( glb ` K ) ` { z e. ( Base ` K ) | Y C_ ( ( ( DIsoH ` K ) ` W ) ` z ) } ) ) ) ) |
41 |
40
|
3adant3 |
|- ( ( ( K e. HL /\ W e. H ) /\ Y C_ V /\ X C_ Y ) -> ( ._|_ ` Y ) = ( ( ( DIsoH ` K ) ` W ) ` ( ( oc ` K ) ` ( ( glb ` K ) ` { z e. ( Base ` K ) | Y C_ ( ( ( DIsoH ` K ) ` W ) ` z ) } ) ) ) ) |
42 |
|
simp3 |
|- ( ( ( K e. HL /\ W e. H ) /\ Y C_ V /\ X C_ Y ) -> X C_ Y ) |
43 |
|
simp2 |
|- ( ( ( K e. HL /\ W e. H ) /\ Y C_ V /\ X C_ Y ) -> Y C_ V ) |
44 |
42 43
|
sstrd |
|- ( ( ( K e. HL /\ W e. H ) /\ Y C_ V /\ X C_ Y ) -> X C_ V ) |
45 |
15 17 27 1 36 2 3 4
|
dochval |
|- ( ( ( K e. HL /\ W e. H ) /\ X C_ V ) -> ( ._|_ ` X ) = ( ( ( DIsoH ` K ) ` W ) ` ( ( oc ` K ) ` ( ( glb ` K ) ` { z e. ( Base ` K ) | X C_ ( ( ( DIsoH ` K ) ` W ) ` z ) } ) ) ) ) |
46 |
31 44 45
|
syl2anc |
|- ( ( ( K e. HL /\ W e. H ) /\ Y C_ V /\ X C_ Y ) -> ( ._|_ ` X ) = ( ( ( DIsoH ` K ) ` W ) ` ( ( oc ` K ) ` ( ( glb ` K ) ` { z e. ( Base ` K ) | X C_ ( ( ( DIsoH ` K ) ` W ) ` z ) } ) ) ) ) |
47 |
39 41 46
|
3sstr4d |
|- ( ( ( K e. HL /\ W e. H ) /\ Y C_ V /\ X C_ Y ) -> ( ._|_ ` Y ) C_ ( ._|_ ` X ) ) |