Step |
Hyp |
Ref |
Expression |
1 |
|
dochss.h |
|- H = ( LHyp ` K ) |
2 |
|
dochss.u |
|- U = ( ( DVecH ` K ) ` W ) |
3 |
|
dochss.v |
|- V = ( Base ` U ) |
4 |
|
dochss.o |
|- ._|_ = ( ( ocH ` K ) ` W ) |
5 |
|
ssintub |
|- X C_ |^| { z e. ran ( ( DIsoH ` K ) ` W ) | X C_ z } |
6 |
|
eqid |
|- ( ( DIsoH ` K ) ` W ) = ( ( DIsoH ` K ) ` W ) |
7 |
1 6 2 3 4
|
dochcl |
|- ( ( ( K e. HL /\ W e. H ) /\ X C_ V ) -> ( ._|_ ` X ) e. ran ( ( DIsoH ` K ) ` W ) ) |
8 |
|
eqid |
|- ( oc ` K ) = ( oc ` K ) |
9 |
8 1 6 4
|
dochvalr |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ._|_ ` X ) e. ran ( ( DIsoH ` K ) ` W ) ) -> ( ._|_ ` ( ._|_ ` X ) ) = ( ( ( DIsoH ` K ) ` W ) ` ( ( oc ` K ) ` ( `' ( ( DIsoH ` K ) ` W ) ` ( ._|_ ` X ) ) ) ) ) |
10 |
7 9
|
syldan |
|- ( ( ( K e. HL /\ W e. H ) /\ X C_ V ) -> ( ._|_ ` ( ._|_ ` X ) ) = ( ( ( DIsoH ` K ) ` W ) ` ( ( oc ` K ) ` ( `' ( ( DIsoH ` K ) ` W ) ` ( ._|_ ` X ) ) ) ) ) |
11 |
8 1 6 2 3 4
|
dochval2 |
|- ( ( ( K e. HL /\ W e. H ) /\ X C_ V ) -> ( ._|_ ` X ) = ( ( ( DIsoH ` K ) ` W ) ` ( ( oc ` K ) ` ( `' ( ( DIsoH ` K ) ` W ) ` |^| { z e. ran ( ( DIsoH ` K ) ` W ) | X C_ z } ) ) ) ) |
12 |
11
|
fveq2d |
|- ( ( ( K e. HL /\ W e. H ) /\ X C_ V ) -> ( `' ( ( DIsoH ` K ) ` W ) ` ( ._|_ ` X ) ) = ( `' ( ( DIsoH ` K ) ` W ) ` ( ( ( DIsoH ` K ) ` W ) ` ( ( oc ` K ) ` ( `' ( ( DIsoH ` K ) ` W ) ` |^| { z e. ran ( ( DIsoH ` K ) ` W ) | X C_ z } ) ) ) ) ) |
13 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
14 |
|
eqid |
|- ( LSubSp ` U ) = ( LSubSp ` U ) |
15 |
13 1 6 2 14
|
dihf11 |
|- ( ( K e. HL /\ W e. H ) -> ( ( DIsoH ` K ) ` W ) : ( Base ` K ) -1-1-> ( LSubSp ` U ) ) |
16 |
15
|
adantr |
|- ( ( ( K e. HL /\ W e. H ) /\ X C_ V ) -> ( ( DIsoH ` K ) ` W ) : ( Base ` K ) -1-1-> ( LSubSp ` U ) ) |
17 |
|
f1f1orn |
|- ( ( ( DIsoH ` K ) ` W ) : ( Base ` K ) -1-1-> ( LSubSp ` U ) -> ( ( DIsoH ` K ) ` W ) : ( Base ` K ) -1-1-onto-> ran ( ( DIsoH ` K ) ` W ) ) |
18 |
16 17
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ X C_ V ) -> ( ( DIsoH ` K ) ` W ) : ( Base ` K ) -1-1-onto-> ran ( ( DIsoH ` K ) ` W ) ) |
19 |
|
hlop |
|- ( K e. HL -> K e. OP ) |
20 |
19
|
ad2antrr |
|- ( ( ( K e. HL /\ W e. H ) /\ X C_ V ) -> K e. OP ) |
21 |
|
simpl |
|- ( ( ( K e. HL /\ W e. H ) /\ X C_ V ) -> ( K e. HL /\ W e. H ) ) |
22 |
|
ssrab2 |
|- { z e. ran ( ( DIsoH ` K ) ` W ) | X C_ z } C_ ran ( ( DIsoH ` K ) ` W ) |
23 |
22
|
a1i |
|- ( ( ( K e. HL /\ W e. H ) /\ X C_ V ) -> { z e. ran ( ( DIsoH ` K ) ` W ) | X C_ z } C_ ran ( ( DIsoH ` K ) ` W ) ) |
24 |
|
eqid |
|- ( 1. ` K ) = ( 1. ` K ) |
25 |
24 1 6 2 3
|
dih1 |
|- ( ( K e. HL /\ W e. H ) -> ( ( ( DIsoH ` K ) ` W ) ` ( 1. ` K ) ) = V ) |
26 |
25
|
adantr |
|- ( ( ( K e. HL /\ W e. H ) /\ X C_ V ) -> ( ( ( DIsoH ` K ) ` W ) ` ( 1. ` K ) ) = V ) |
27 |
|
f1fn |
|- ( ( ( DIsoH ` K ) ` W ) : ( Base ` K ) -1-1-> ( LSubSp ` U ) -> ( ( DIsoH ` K ) ` W ) Fn ( Base ` K ) ) |
28 |
16 27
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ X C_ V ) -> ( ( DIsoH ` K ) ` W ) Fn ( Base ` K ) ) |
29 |
13 24
|
op1cl |
|- ( K e. OP -> ( 1. ` K ) e. ( Base ` K ) ) |
30 |
20 29
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ X C_ V ) -> ( 1. ` K ) e. ( Base ` K ) ) |
31 |
|
fnfvelrn |
|- ( ( ( ( DIsoH ` K ) ` W ) Fn ( Base ` K ) /\ ( 1. ` K ) e. ( Base ` K ) ) -> ( ( ( DIsoH ` K ) ` W ) ` ( 1. ` K ) ) e. ran ( ( DIsoH ` K ) ` W ) ) |
32 |
28 30 31
|
syl2anc |
|- ( ( ( K e. HL /\ W e. H ) /\ X C_ V ) -> ( ( ( DIsoH ` K ) ` W ) ` ( 1. ` K ) ) e. ran ( ( DIsoH ` K ) ` W ) ) |
33 |
26 32
|
eqeltrrd |
|- ( ( ( K e. HL /\ W e. H ) /\ X C_ V ) -> V e. ran ( ( DIsoH ` K ) ` W ) ) |
34 |
|
simpr |
|- ( ( ( K e. HL /\ W e. H ) /\ X C_ V ) -> X C_ V ) |
35 |
|
sseq2 |
|- ( z = V -> ( X C_ z <-> X C_ V ) ) |
36 |
35
|
elrab |
|- ( V e. { z e. ran ( ( DIsoH ` K ) ` W ) | X C_ z } <-> ( V e. ran ( ( DIsoH ` K ) ` W ) /\ X C_ V ) ) |
37 |
33 34 36
|
sylanbrc |
|- ( ( ( K e. HL /\ W e. H ) /\ X C_ V ) -> V e. { z e. ran ( ( DIsoH ` K ) ` W ) | X C_ z } ) |
38 |
37
|
ne0d |
|- ( ( ( K e. HL /\ W e. H ) /\ X C_ V ) -> { z e. ran ( ( DIsoH ` K ) ` W ) | X C_ z } =/= (/) ) |
39 |
1 6
|
dihintcl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( { z e. ran ( ( DIsoH ` K ) ` W ) | X C_ z } C_ ran ( ( DIsoH ` K ) ` W ) /\ { z e. ran ( ( DIsoH ` K ) ` W ) | X C_ z } =/= (/) ) ) -> |^| { z e. ran ( ( DIsoH ` K ) ` W ) | X C_ z } e. ran ( ( DIsoH ` K ) ` W ) ) |
40 |
21 23 38 39
|
syl12anc |
|- ( ( ( K e. HL /\ W e. H ) /\ X C_ V ) -> |^| { z e. ran ( ( DIsoH ` K ) ` W ) | X C_ z } e. ran ( ( DIsoH ` K ) ` W ) ) |
41 |
|
f1ocnvdm |
|- ( ( ( ( DIsoH ` K ) ` W ) : ( Base ` K ) -1-1-onto-> ran ( ( DIsoH ` K ) ` W ) /\ |^| { z e. ran ( ( DIsoH ` K ) ` W ) | X C_ z } e. ran ( ( DIsoH ` K ) ` W ) ) -> ( `' ( ( DIsoH ` K ) ` W ) ` |^| { z e. ran ( ( DIsoH ` K ) ` W ) | X C_ z } ) e. ( Base ` K ) ) |
42 |
18 40 41
|
syl2anc |
|- ( ( ( K e. HL /\ W e. H ) /\ X C_ V ) -> ( `' ( ( DIsoH ` K ) ` W ) ` |^| { z e. ran ( ( DIsoH ` K ) ` W ) | X C_ z } ) e. ( Base ` K ) ) |
43 |
13 8
|
opoccl |
|- ( ( K e. OP /\ ( `' ( ( DIsoH ` K ) ` W ) ` |^| { z e. ran ( ( DIsoH ` K ) ` W ) | X C_ z } ) e. ( Base ` K ) ) -> ( ( oc ` K ) ` ( `' ( ( DIsoH ` K ) ` W ) ` |^| { z e. ran ( ( DIsoH ` K ) ` W ) | X C_ z } ) ) e. ( Base ` K ) ) |
44 |
20 42 43
|
syl2anc |
|- ( ( ( K e. HL /\ W e. H ) /\ X C_ V ) -> ( ( oc ` K ) ` ( `' ( ( DIsoH ` K ) ` W ) ` |^| { z e. ran ( ( DIsoH ` K ) ` W ) | X C_ z } ) ) e. ( Base ` K ) ) |
45 |
|
f1ocnvfv1 |
|- ( ( ( ( DIsoH ` K ) ` W ) : ( Base ` K ) -1-1-onto-> ran ( ( DIsoH ` K ) ` W ) /\ ( ( oc ` K ) ` ( `' ( ( DIsoH ` K ) ` W ) ` |^| { z e. ran ( ( DIsoH ` K ) ` W ) | X C_ z } ) ) e. ( Base ` K ) ) -> ( `' ( ( DIsoH ` K ) ` W ) ` ( ( ( DIsoH ` K ) ` W ) ` ( ( oc ` K ) ` ( `' ( ( DIsoH ` K ) ` W ) ` |^| { z e. ran ( ( DIsoH ` K ) ` W ) | X C_ z } ) ) ) ) = ( ( oc ` K ) ` ( `' ( ( DIsoH ` K ) ` W ) ` |^| { z e. ran ( ( DIsoH ` K ) ` W ) | X C_ z } ) ) ) |
46 |
18 44 45
|
syl2anc |
|- ( ( ( K e. HL /\ W e. H ) /\ X C_ V ) -> ( `' ( ( DIsoH ` K ) ` W ) ` ( ( ( DIsoH ` K ) ` W ) ` ( ( oc ` K ) ` ( `' ( ( DIsoH ` K ) ` W ) ` |^| { z e. ran ( ( DIsoH ` K ) ` W ) | X C_ z } ) ) ) ) = ( ( oc ` K ) ` ( `' ( ( DIsoH ` K ) ` W ) ` |^| { z e. ran ( ( DIsoH ` K ) ` W ) | X C_ z } ) ) ) |
47 |
12 46
|
eqtrd |
|- ( ( ( K e. HL /\ W e. H ) /\ X C_ V ) -> ( `' ( ( DIsoH ` K ) ` W ) ` ( ._|_ ` X ) ) = ( ( oc ` K ) ` ( `' ( ( DIsoH ` K ) ` W ) ` |^| { z e. ran ( ( DIsoH ` K ) ` W ) | X C_ z } ) ) ) |
48 |
47
|
fveq2d |
|- ( ( ( K e. HL /\ W e. H ) /\ X C_ V ) -> ( ( oc ` K ) ` ( `' ( ( DIsoH ` K ) ` W ) ` ( ._|_ ` X ) ) ) = ( ( oc ` K ) ` ( ( oc ` K ) ` ( `' ( ( DIsoH ` K ) ` W ) ` |^| { z e. ran ( ( DIsoH ` K ) ` W ) | X C_ z } ) ) ) ) |
49 |
13 8
|
opococ |
|- ( ( K e. OP /\ ( `' ( ( DIsoH ` K ) ` W ) ` |^| { z e. ran ( ( DIsoH ` K ) ` W ) | X C_ z } ) e. ( Base ` K ) ) -> ( ( oc ` K ) ` ( ( oc ` K ) ` ( `' ( ( DIsoH ` K ) ` W ) ` |^| { z e. ran ( ( DIsoH ` K ) ` W ) | X C_ z } ) ) ) = ( `' ( ( DIsoH ` K ) ` W ) ` |^| { z e. ran ( ( DIsoH ` K ) ` W ) | X C_ z } ) ) |
50 |
20 42 49
|
syl2anc |
|- ( ( ( K e. HL /\ W e. H ) /\ X C_ V ) -> ( ( oc ` K ) ` ( ( oc ` K ) ` ( `' ( ( DIsoH ` K ) ` W ) ` |^| { z e. ran ( ( DIsoH ` K ) ` W ) | X C_ z } ) ) ) = ( `' ( ( DIsoH ` K ) ` W ) ` |^| { z e. ran ( ( DIsoH ` K ) ` W ) | X C_ z } ) ) |
51 |
48 50
|
eqtrd |
|- ( ( ( K e. HL /\ W e. H ) /\ X C_ V ) -> ( ( oc ` K ) ` ( `' ( ( DIsoH ` K ) ` W ) ` ( ._|_ ` X ) ) ) = ( `' ( ( DIsoH ` K ) ` W ) ` |^| { z e. ran ( ( DIsoH ` K ) ` W ) | X C_ z } ) ) |
52 |
51
|
fveq2d |
|- ( ( ( K e. HL /\ W e. H ) /\ X C_ V ) -> ( ( ( DIsoH ` K ) ` W ) ` ( ( oc ` K ) ` ( `' ( ( DIsoH ` K ) ` W ) ` ( ._|_ ` X ) ) ) ) = ( ( ( DIsoH ` K ) ` W ) ` ( `' ( ( DIsoH ` K ) ` W ) ` |^| { z e. ran ( ( DIsoH ` K ) ` W ) | X C_ z } ) ) ) |
53 |
|
f1ocnvfv2 |
|- ( ( ( ( DIsoH ` K ) ` W ) : ( Base ` K ) -1-1-onto-> ran ( ( DIsoH ` K ) ` W ) /\ |^| { z e. ran ( ( DIsoH ` K ) ` W ) | X C_ z } e. ran ( ( DIsoH ` K ) ` W ) ) -> ( ( ( DIsoH ` K ) ` W ) ` ( `' ( ( DIsoH ` K ) ` W ) ` |^| { z e. ran ( ( DIsoH ` K ) ` W ) | X C_ z } ) ) = |^| { z e. ran ( ( DIsoH ` K ) ` W ) | X C_ z } ) |
54 |
18 40 53
|
syl2anc |
|- ( ( ( K e. HL /\ W e. H ) /\ X C_ V ) -> ( ( ( DIsoH ` K ) ` W ) ` ( `' ( ( DIsoH ` K ) ` W ) ` |^| { z e. ran ( ( DIsoH ` K ) ` W ) | X C_ z } ) ) = |^| { z e. ran ( ( DIsoH ` K ) ` W ) | X C_ z } ) |
55 |
10 52 54
|
3eqtrrd |
|- ( ( ( K e. HL /\ W e. H ) /\ X C_ V ) -> |^| { z e. ran ( ( DIsoH ` K ) ` W ) | X C_ z } = ( ._|_ ` ( ._|_ ` X ) ) ) |
56 |
5 55
|
sseqtrid |
|- ( ( ( K e. HL /\ W e. H ) /\ X C_ V ) -> X C_ ( ._|_ ` ( ._|_ ` X ) ) ) |