| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dochoc.h |
|- H = ( LHyp ` K ) |
| 2 |
|
dochoc.i |
|- I = ( ( DIsoH ` K ) ` W ) |
| 3 |
|
dochoc.o |
|- ._|_ = ( ( ocH ` K ) ` W ) |
| 4 |
|
eqid |
|- ( oc ` K ) = ( oc ` K ) |
| 5 |
4 1 2 3
|
dochvalr |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. ran I ) -> ( ._|_ ` X ) = ( I ` ( ( oc ` K ) ` ( `' I ` X ) ) ) ) |
| 6 |
5
|
fveq2d |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. ran I ) -> ( ._|_ ` ( ._|_ ` X ) ) = ( ._|_ ` ( I ` ( ( oc ` K ) ` ( `' I ` X ) ) ) ) ) |
| 7 |
|
hlop |
|- ( K e. HL -> K e. OP ) |
| 8 |
7
|
ad2antrr |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. ran I ) -> K e. OP ) |
| 9 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
| 10 |
9 1 2
|
dihcnvcl |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. ran I ) -> ( `' I ` X ) e. ( Base ` K ) ) |
| 11 |
9 4
|
opoccl |
|- ( ( K e. OP /\ ( `' I ` X ) e. ( Base ` K ) ) -> ( ( oc ` K ) ` ( `' I ` X ) ) e. ( Base ` K ) ) |
| 12 |
8 10 11
|
syl2anc |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. ran I ) -> ( ( oc ` K ) ` ( `' I ` X ) ) e. ( Base ` K ) ) |
| 13 |
9 1 2
|
dihcl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( oc ` K ) ` ( `' I ` X ) ) e. ( Base ` K ) ) -> ( I ` ( ( oc ` K ) ` ( `' I ` X ) ) ) e. ran I ) |
| 14 |
12 13
|
syldan |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. ran I ) -> ( I ` ( ( oc ` K ) ` ( `' I ` X ) ) ) e. ran I ) |
| 15 |
4 1 2 3
|
dochvalr |
|- ( ( ( K e. HL /\ W e. H ) /\ ( I ` ( ( oc ` K ) ` ( `' I ` X ) ) ) e. ran I ) -> ( ._|_ ` ( I ` ( ( oc ` K ) ` ( `' I ` X ) ) ) ) = ( I ` ( ( oc ` K ) ` ( `' I ` ( I ` ( ( oc ` K ) ` ( `' I ` X ) ) ) ) ) ) ) |
| 16 |
14 15
|
syldan |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. ran I ) -> ( ._|_ ` ( I ` ( ( oc ` K ) ` ( `' I ` X ) ) ) ) = ( I ` ( ( oc ` K ) ` ( `' I ` ( I ` ( ( oc ` K ) ` ( `' I ` X ) ) ) ) ) ) ) |
| 17 |
9 1 2
|
dihcnvid1 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( oc ` K ) ` ( `' I ` X ) ) e. ( Base ` K ) ) -> ( `' I ` ( I ` ( ( oc ` K ) ` ( `' I ` X ) ) ) ) = ( ( oc ` K ) ` ( `' I ` X ) ) ) |
| 18 |
12 17
|
syldan |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. ran I ) -> ( `' I ` ( I ` ( ( oc ` K ) ` ( `' I ` X ) ) ) ) = ( ( oc ` K ) ` ( `' I ` X ) ) ) |
| 19 |
18
|
fveq2d |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. ran I ) -> ( ( oc ` K ) ` ( `' I ` ( I ` ( ( oc ` K ) ` ( `' I ` X ) ) ) ) ) = ( ( oc ` K ) ` ( ( oc ` K ) ` ( `' I ` X ) ) ) ) |
| 20 |
9 4
|
opococ |
|- ( ( K e. OP /\ ( `' I ` X ) e. ( Base ` K ) ) -> ( ( oc ` K ) ` ( ( oc ` K ) ` ( `' I ` X ) ) ) = ( `' I ` X ) ) |
| 21 |
8 10 20
|
syl2anc |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. ran I ) -> ( ( oc ` K ) ` ( ( oc ` K ) ` ( `' I ` X ) ) ) = ( `' I ` X ) ) |
| 22 |
19 21
|
eqtrd |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. ran I ) -> ( ( oc ` K ) ` ( `' I ` ( I ` ( ( oc ` K ) ` ( `' I ` X ) ) ) ) ) = ( `' I ` X ) ) |
| 23 |
22
|
fveq2d |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. ran I ) -> ( I ` ( ( oc ` K ) ` ( `' I ` ( I ` ( ( oc ` K ) ` ( `' I ` X ) ) ) ) ) ) = ( I ` ( `' I ` X ) ) ) |
| 24 |
1 2
|
dihcnvid2 |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. ran I ) -> ( I ` ( `' I ` X ) ) = X ) |
| 25 |
23 24
|
eqtrd |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. ran I ) -> ( I ` ( ( oc ` K ) ` ( `' I ` ( I ` ( ( oc ` K ) ` ( `' I ` X ) ) ) ) ) ) = X ) |
| 26 |
16 25
|
eqtrd |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. ran I ) -> ( ._|_ ` ( I ` ( ( oc ` K ) ` ( `' I ` X ) ) ) ) = X ) |
| 27 |
6 26
|
eqtrd |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. ran I ) -> ( ._|_ ` ( ._|_ ` X ) ) = X ) |