Step |
Hyp |
Ref |
Expression |
1 |
|
dochoc.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
dochoc.i |
⊢ 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
dochoc.o |
⊢ ⊥ = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
eqid |
⊢ ( oc ‘ 𝐾 ) = ( oc ‘ 𝐾 ) |
5 |
4 1 2 3
|
dochvalr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → ( ⊥ ‘ 𝑋 ) = ( 𝐼 ‘ ( ( oc ‘ 𝐾 ) ‘ ( ◡ 𝐼 ‘ 𝑋 ) ) ) ) |
6 |
5
|
fveq2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = ( ⊥ ‘ ( 𝐼 ‘ ( ( oc ‘ 𝐾 ) ‘ ( ◡ 𝐼 ‘ 𝑋 ) ) ) ) ) |
7 |
|
hlop |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ OP ) |
8 |
7
|
ad2antrr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → 𝐾 ∈ OP ) |
9 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
10 |
9 1 2
|
dihcnvcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → ( ◡ 𝐼 ‘ 𝑋 ) ∈ ( Base ‘ 𝐾 ) ) |
11 |
9 4
|
opoccl |
⊢ ( ( 𝐾 ∈ OP ∧ ( ◡ 𝐼 ‘ 𝑋 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( oc ‘ 𝐾 ) ‘ ( ◡ 𝐼 ‘ 𝑋 ) ) ∈ ( Base ‘ 𝐾 ) ) |
12 |
8 10 11
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → ( ( oc ‘ 𝐾 ) ‘ ( ◡ 𝐼 ‘ 𝑋 ) ) ∈ ( Base ‘ 𝐾 ) ) |
13 |
9 1 2
|
dihcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( oc ‘ 𝐾 ) ‘ ( ◡ 𝐼 ‘ 𝑋 ) ) ∈ ( Base ‘ 𝐾 ) ) → ( 𝐼 ‘ ( ( oc ‘ 𝐾 ) ‘ ( ◡ 𝐼 ‘ 𝑋 ) ) ) ∈ ran 𝐼 ) |
14 |
12 13
|
syldan |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → ( 𝐼 ‘ ( ( oc ‘ 𝐾 ) ‘ ( ◡ 𝐼 ‘ 𝑋 ) ) ) ∈ ran 𝐼 ) |
15 |
4 1 2 3
|
dochvalr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐼 ‘ ( ( oc ‘ 𝐾 ) ‘ ( ◡ 𝐼 ‘ 𝑋 ) ) ) ∈ ran 𝐼 ) → ( ⊥ ‘ ( 𝐼 ‘ ( ( oc ‘ 𝐾 ) ‘ ( ◡ 𝐼 ‘ 𝑋 ) ) ) ) = ( 𝐼 ‘ ( ( oc ‘ 𝐾 ) ‘ ( ◡ 𝐼 ‘ ( 𝐼 ‘ ( ( oc ‘ 𝐾 ) ‘ ( ◡ 𝐼 ‘ 𝑋 ) ) ) ) ) ) ) |
16 |
14 15
|
syldan |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → ( ⊥ ‘ ( 𝐼 ‘ ( ( oc ‘ 𝐾 ) ‘ ( ◡ 𝐼 ‘ 𝑋 ) ) ) ) = ( 𝐼 ‘ ( ( oc ‘ 𝐾 ) ‘ ( ◡ 𝐼 ‘ ( 𝐼 ‘ ( ( oc ‘ 𝐾 ) ‘ ( ◡ 𝐼 ‘ 𝑋 ) ) ) ) ) ) ) |
17 |
9 1 2
|
dihcnvid1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( oc ‘ 𝐾 ) ‘ ( ◡ 𝐼 ‘ 𝑋 ) ) ∈ ( Base ‘ 𝐾 ) ) → ( ◡ 𝐼 ‘ ( 𝐼 ‘ ( ( oc ‘ 𝐾 ) ‘ ( ◡ 𝐼 ‘ 𝑋 ) ) ) ) = ( ( oc ‘ 𝐾 ) ‘ ( ◡ 𝐼 ‘ 𝑋 ) ) ) |
18 |
12 17
|
syldan |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → ( ◡ 𝐼 ‘ ( 𝐼 ‘ ( ( oc ‘ 𝐾 ) ‘ ( ◡ 𝐼 ‘ 𝑋 ) ) ) ) = ( ( oc ‘ 𝐾 ) ‘ ( ◡ 𝐼 ‘ 𝑋 ) ) ) |
19 |
18
|
fveq2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → ( ( oc ‘ 𝐾 ) ‘ ( ◡ 𝐼 ‘ ( 𝐼 ‘ ( ( oc ‘ 𝐾 ) ‘ ( ◡ 𝐼 ‘ 𝑋 ) ) ) ) ) = ( ( oc ‘ 𝐾 ) ‘ ( ( oc ‘ 𝐾 ) ‘ ( ◡ 𝐼 ‘ 𝑋 ) ) ) ) |
20 |
9 4
|
opococ |
⊢ ( ( 𝐾 ∈ OP ∧ ( ◡ 𝐼 ‘ 𝑋 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( oc ‘ 𝐾 ) ‘ ( ( oc ‘ 𝐾 ) ‘ ( ◡ 𝐼 ‘ 𝑋 ) ) ) = ( ◡ 𝐼 ‘ 𝑋 ) ) |
21 |
8 10 20
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → ( ( oc ‘ 𝐾 ) ‘ ( ( oc ‘ 𝐾 ) ‘ ( ◡ 𝐼 ‘ 𝑋 ) ) ) = ( ◡ 𝐼 ‘ 𝑋 ) ) |
22 |
19 21
|
eqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → ( ( oc ‘ 𝐾 ) ‘ ( ◡ 𝐼 ‘ ( 𝐼 ‘ ( ( oc ‘ 𝐾 ) ‘ ( ◡ 𝐼 ‘ 𝑋 ) ) ) ) ) = ( ◡ 𝐼 ‘ 𝑋 ) ) |
23 |
22
|
fveq2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → ( 𝐼 ‘ ( ( oc ‘ 𝐾 ) ‘ ( ◡ 𝐼 ‘ ( 𝐼 ‘ ( ( oc ‘ 𝐾 ) ‘ ( ◡ 𝐼 ‘ 𝑋 ) ) ) ) ) ) = ( 𝐼 ‘ ( ◡ 𝐼 ‘ 𝑋 ) ) ) |
24 |
1 2
|
dihcnvid2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → ( 𝐼 ‘ ( ◡ 𝐼 ‘ 𝑋 ) ) = 𝑋 ) |
25 |
23 24
|
eqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → ( 𝐼 ‘ ( ( oc ‘ 𝐾 ) ‘ ( ◡ 𝐼 ‘ ( 𝐼 ‘ ( ( oc ‘ 𝐾 ) ‘ ( ◡ 𝐼 ‘ 𝑋 ) ) ) ) ) ) = 𝑋 ) |
26 |
16 25
|
eqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → ( ⊥ ‘ ( 𝐼 ‘ ( ( oc ‘ 𝐾 ) ‘ ( ◡ 𝐼 ‘ 𝑋 ) ) ) ) = 𝑋 ) |
27 |
6 26
|
eqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = 𝑋 ) |