| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dochsscl.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 2 |  | dochsscl.u | ⊢ 𝑈  =  ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 3 |  | dochsscl.v | ⊢ 𝑉  =  ( Base ‘ 𝑈 ) | 
						
							| 4 |  | dochsscl.i | ⊢ 𝐼  =  ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 5 |  | dochsscl.o | ⊢  ⊥   =  ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 6 |  | dochsscl.k | ⊢ ( 𝜑  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 7 |  | dochsscl.x | ⊢ ( 𝜑  →  𝑋  ⊆  𝑉 ) | 
						
							| 8 |  | dochsscl.y | ⊢ ( 𝜑  →  𝑌  ∈  ran  𝐼 ) | 
						
							| 9 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  ⊆  𝑌 )  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 10 | 7 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  ⊆  𝑌 )  →  𝑋  ⊆  𝑉 ) | 
						
							| 11 | 1 2 3 5 | dochssv | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝑋  ⊆  𝑉 )  →  (  ⊥  ‘ 𝑋 )  ⊆  𝑉 ) | 
						
							| 12 | 9 10 11 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑋  ⊆  𝑌 )  →  (  ⊥  ‘ 𝑋 )  ⊆  𝑉 ) | 
						
							| 13 | 1 2 4 3 | dihrnss | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝑌  ∈  ran  𝐼 )  →  𝑌  ⊆  𝑉 ) | 
						
							| 14 | 6 8 13 | syl2anc | ⊢ ( 𝜑  →  𝑌  ⊆  𝑉 ) | 
						
							| 15 | 14 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  ⊆  𝑌 )  →  𝑌  ⊆  𝑉 ) | 
						
							| 16 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑋  ⊆  𝑌 )  →  𝑋  ⊆  𝑌 ) | 
						
							| 17 | 1 2 3 5 | dochss | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝑌  ⊆  𝑉  ∧  𝑋  ⊆  𝑌 )  →  (  ⊥  ‘ 𝑌 )  ⊆  (  ⊥  ‘ 𝑋 ) ) | 
						
							| 18 | 9 15 16 17 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑋  ⊆  𝑌 )  →  (  ⊥  ‘ 𝑌 )  ⊆  (  ⊥  ‘ 𝑋 ) ) | 
						
							| 19 | 1 2 3 5 | dochss | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  (  ⊥  ‘ 𝑋 )  ⊆  𝑉  ∧  (  ⊥  ‘ 𝑌 )  ⊆  (  ⊥  ‘ 𝑋 ) )  →  (  ⊥  ‘ (  ⊥  ‘ 𝑋 ) )  ⊆  (  ⊥  ‘ (  ⊥  ‘ 𝑌 ) ) ) | 
						
							| 20 | 9 12 18 19 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑋  ⊆  𝑌 )  →  (  ⊥  ‘ (  ⊥  ‘ 𝑋 ) )  ⊆  (  ⊥  ‘ (  ⊥  ‘ 𝑌 ) ) ) | 
						
							| 21 | 8 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  ⊆  𝑌 )  →  𝑌  ∈  ran  𝐼 ) | 
						
							| 22 | 1 4 5 | dochoc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝑌  ∈  ran  𝐼 )  →  (  ⊥  ‘ (  ⊥  ‘ 𝑌 ) )  =  𝑌 ) | 
						
							| 23 | 9 21 22 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑋  ⊆  𝑌 )  →  (  ⊥  ‘ (  ⊥  ‘ 𝑌 ) )  =  𝑌 ) | 
						
							| 24 | 20 23 | sseqtrd | ⊢ ( ( 𝜑  ∧  𝑋  ⊆  𝑌 )  →  (  ⊥  ‘ (  ⊥  ‘ 𝑋 ) )  ⊆  𝑌 ) | 
						
							| 25 | 1 2 3 5 | dochocss | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝑋  ⊆  𝑉 )  →  𝑋  ⊆  (  ⊥  ‘ (  ⊥  ‘ 𝑋 ) ) ) | 
						
							| 26 | 6 7 25 | syl2anc | ⊢ ( 𝜑  →  𝑋  ⊆  (  ⊥  ‘ (  ⊥  ‘ 𝑋 ) ) ) | 
						
							| 27 |  | sstr | ⊢ ( ( 𝑋  ⊆  (  ⊥  ‘ (  ⊥  ‘ 𝑋 ) )  ∧  (  ⊥  ‘ (  ⊥  ‘ 𝑋 ) )  ⊆  𝑌 )  →  𝑋  ⊆  𝑌 ) | 
						
							| 28 | 26 27 | sylan | ⊢ ( ( 𝜑  ∧  (  ⊥  ‘ (  ⊥  ‘ 𝑋 ) )  ⊆  𝑌 )  →  𝑋  ⊆  𝑌 ) | 
						
							| 29 | 24 28 | impbida | ⊢ ( 𝜑  →  ( 𝑋  ⊆  𝑌  ↔  (  ⊥  ‘ (  ⊥  ‘ 𝑋 ) )  ⊆  𝑌 ) ) |