| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dochsscl.h |
|
| 2 |
|
dochsscl.u |
|
| 3 |
|
dochsscl.v |
|
| 4 |
|
dochsscl.i |
|
| 5 |
|
dochsscl.o |
|
| 6 |
|
dochsscl.k |
|
| 7 |
|
dochsscl.x |
|
| 8 |
|
dochsscl.y |
|
| 9 |
6
|
adantr |
|
| 10 |
7
|
adantr |
|
| 11 |
1 2 3 5
|
dochssv |
|
| 12 |
9 10 11
|
syl2anc |
|
| 13 |
1 2 4 3
|
dihrnss |
|
| 14 |
6 8 13
|
syl2anc |
|
| 15 |
14
|
adantr |
|
| 16 |
|
simpr |
|
| 17 |
1 2 3 5
|
dochss |
|
| 18 |
9 15 16 17
|
syl3anc |
|
| 19 |
1 2 3 5
|
dochss |
|
| 20 |
9 12 18 19
|
syl3anc |
|
| 21 |
8
|
adantr |
|
| 22 |
1 4 5
|
dochoc |
|
| 23 |
9 21 22
|
syl2anc |
|
| 24 |
20 23
|
sseqtrd |
|
| 25 |
1 2 3 5
|
dochocss |
|
| 26 |
6 7 25
|
syl2anc |
|
| 27 |
|
sstr |
|
| 28 |
26 27
|
sylan |
|
| 29 |
24 28
|
impbida |
|