Metamath Proof Explorer


Theorem dochoccl

Description: A set of vectors is closed iff it equals its double orthocomplent. (Contributed by NM, 1-Jan-2015)

Ref Expression
Hypotheses dochoccl.h H = LHyp K
dochoccl.i I = DIsoH K W
dochoccl.u U = DVecH K W
dochoccl.v V = Base U
dochoccl.o ˙ = ocH K W
dochoccl.k φ K HL W H
dochoccl.g φ X V
Assertion dochoccl φ X ran I ˙ ˙ X = X

Proof

Step Hyp Ref Expression
1 dochoccl.h H = LHyp K
2 dochoccl.i I = DIsoH K W
3 dochoccl.u U = DVecH K W
4 dochoccl.v V = Base U
5 dochoccl.o ˙ = ocH K W
6 dochoccl.k φ K HL W H
7 dochoccl.g φ X V
8 1 2 5 dochoc K HL W H X ran I ˙ ˙ X = X
9 6 8 sylan φ X ran I ˙ ˙ X = X
10 simpr φ ˙ ˙ X = X ˙ ˙ X = X
11 1 3 4 5 dochssv K HL W H X V ˙ X V
12 6 7 11 syl2anc φ ˙ X V
13 1 2 3 4 5 dochcl K HL W H ˙ X V ˙ ˙ X ran I
14 6 12 13 syl2anc φ ˙ ˙ X ran I
15 14 adantr φ ˙ ˙ X = X ˙ ˙ X ran I
16 10 15 eqeltrrd φ ˙ ˙ X = X X ran I
17 9 16 impbida φ X ran I ˙ ˙ X = X