Metamath Proof Explorer


Theorem dochoc

Description: Double negative law for orthocomplement of a closed subspace. (Contributed by NM, 14-Mar-2014)

Ref Expression
Hypotheses dochoc.h H = LHyp K
dochoc.i I = DIsoH K W
dochoc.o ˙ = ocH K W
Assertion dochoc K HL W H X ran I ˙ ˙ X = X

Proof

Step Hyp Ref Expression
1 dochoc.h H = LHyp K
2 dochoc.i I = DIsoH K W
3 dochoc.o ˙ = ocH K W
4 eqid oc K = oc K
5 4 1 2 3 dochvalr K HL W H X ran I ˙ X = I oc K I -1 X
6 5 fveq2d K HL W H X ran I ˙ ˙ X = ˙ I oc K I -1 X
7 hlop K HL K OP
8 7 ad2antrr K HL W H X ran I K OP
9 eqid Base K = Base K
10 9 1 2 dihcnvcl K HL W H X ran I I -1 X Base K
11 9 4 opoccl K OP I -1 X Base K oc K I -1 X Base K
12 8 10 11 syl2anc K HL W H X ran I oc K I -1 X Base K
13 9 1 2 dihcl K HL W H oc K I -1 X Base K I oc K I -1 X ran I
14 12 13 syldan K HL W H X ran I I oc K I -1 X ran I
15 4 1 2 3 dochvalr K HL W H I oc K I -1 X ran I ˙ I oc K I -1 X = I oc K I -1 I oc K I -1 X
16 14 15 syldan K HL W H X ran I ˙ I oc K I -1 X = I oc K I -1 I oc K I -1 X
17 9 1 2 dihcnvid1 K HL W H oc K I -1 X Base K I -1 I oc K I -1 X = oc K I -1 X
18 12 17 syldan K HL W H X ran I I -1 I oc K I -1 X = oc K I -1 X
19 18 fveq2d K HL W H X ran I oc K I -1 I oc K I -1 X = oc K oc K I -1 X
20 9 4 opococ K OP I -1 X Base K oc K oc K I -1 X = I -1 X
21 8 10 20 syl2anc K HL W H X ran I oc K oc K I -1 X = I -1 X
22 19 21 eqtrd K HL W H X ran I oc K I -1 I oc K I -1 X = I -1 X
23 22 fveq2d K HL W H X ran I I oc K I -1 I oc K I -1 X = I I -1 X
24 1 2 dihcnvid2 K HL W H X ran I I I -1 X = X
25 23 24 eqtrd K HL W H X ran I I oc K I -1 I oc K I -1 X = X
26 16 25 eqtrd K HL W H X ran I ˙ I oc K I -1 X = X
27 6 26 eqtrd K HL W H X ran I ˙ ˙ X = X