Metamath Proof Explorer


Theorem dochoccl

Description: A set of vectors is closed iff it equals its double orthocomplent. (Contributed by NM, 1-Jan-2015)

Ref Expression
Hypotheses dochoccl.h 𝐻 = ( LHyp ‘ 𝐾 )
dochoccl.i 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )
dochoccl.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
dochoccl.v 𝑉 = ( Base ‘ 𝑈 )
dochoccl.o = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
dochoccl.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
dochoccl.g ( 𝜑𝑋𝑉 )
Assertion dochoccl ( 𝜑 → ( 𝑋 ∈ ran 𝐼 ↔ ( ‘ ( 𝑋 ) ) = 𝑋 ) )

Proof

Step Hyp Ref Expression
1 dochoccl.h 𝐻 = ( LHyp ‘ 𝐾 )
2 dochoccl.i 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )
3 dochoccl.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
4 dochoccl.v 𝑉 = ( Base ‘ 𝑈 )
5 dochoccl.o = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
6 dochoccl.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
7 dochoccl.g ( 𝜑𝑋𝑉 )
8 1 2 5 dochoc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → ( ‘ ( 𝑋 ) ) = 𝑋 )
9 6 8 sylan ( ( 𝜑𝑋 ∈ ran 𝐼 ) → ( ‘ ( 𝑋 ) ) = 𝑋 )
10 simpr ( ( 𝜑 ∧ ( ‘ ( 𝑋 ) ) = 𝑋 ) → ( ‘ ( 𝑋 ) ) = 𝑋 )
11 1 3 4 5 dochssv ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋𝑉 ) → ( 𝑋 ) ⊆ 𝑉 )
12 6 7 11 syl2anc ( 𝜑 → ( 𝑋 ) ⊆ 𝑉 )
13 1 2 3 4 5 dochcl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋 ) ⊆ 𝑉 ) → ( ‘ ( 𝑋 ) ) ∈ ran 𝐼 )
14 6 12 13 syl2anc ( 𝜑 → ( ‘ ( 𝑋 ) ) ∈ ran 𝐼 )
15 14 adantr ( ( 𝜑 ∧ ( ‘ ( 𝑋 ) ) = 𝑋 ) → ( ‘ ( 𝑋 ) ) ∈ ran 𝐼 )
16 10 15 eqeltrrd ( ( 𝜑 ∧ ( ‘ ( 𝑋 ) ) = 𝑋 ) → 𝑋 ∈ ran 𝐼 )
17 9 16 impbida ( 𝜑 → ( 𝑋 ∈ ran 𝐼 ↔ ( ‘ ( 𝑋 ) ) = 𝑋 ) )