| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dochoccl.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 2 |
|
dochoccl.i |
⊢ 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) |
| 3 |
|
dochoccl.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
| 4 |
|
dochoccl.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
| 5 |
|
dochoccl.o |
⊢ ⊥ = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
| 6 |
|
dochoccl.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 7 |
|
dochoccl.g |
⊢ ( 𝜑 → 𝑋 ⊆ 𝑉 ) |
| 8 |
1 2 5
|
dochoc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = 𝑋 ) |
| 9 |
6 8
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ran 𝐼 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = 𝑋 ) |
| 10 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = 𝑋 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = 𝑋 ) |
| 11 |
1 3 4 5
|
dochssv |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ⊆ 𝑉 ) → ( ⊥ ‘ 𝑋 ) ⊆ 𝑉 ) |
| 12 |
6 7 11
|
syl2anc |
⊢ ( 𝜑 → ( ⊥ ‘ 𝑋 ) ⊆ 𝑉 ) |
| 13 |
1 2 3 4 5
|
dochcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ⊥ ‘ 𝑋 ) ⊆ 𝑉 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ∈ ran 𝐼 ) |
| 14 |
6 12 13
|
syl2anc |
⊢ ( 𝜑 → ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ∈ ran 𝐼 ) |
| 15 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = 𝑋 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ∈ ran 𝐼 ) |
| 16 |
10 15
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = 𝑋 ) → 𝑋 ∈ ran 𝐼 ) |
| 17 |
9 16
|
impbida |
⊢ ( 𝜑 → ( 𝑋 ∈ ran 𝐼 ↔ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = 𝑋 ) ) |