| Step |
Hyp |
Ref |
Expression |
| 1 |
|
doch11.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 2 |
|
doch11.i |
⊢ 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) |
| 3 |
|
doch11.o |
⊢ ⊥ = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
| 4 |
|
doch11.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 5 |
|
doch11.x |
⊢ ( 𝜑 → 𝑋 ∈ ran 𝐼 ) |
| 6 |
|
doch11.y |
⊢ ( 𝜑 → 𝑌 ∈ ran 𝐼 ) |
| 7 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ⊆ 𝑌 ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 8 |
|
eqid |
⊢ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
| 9 |
|
eqid |
⊢ ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) = ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 10 |
1 8 2 9
|
dihrnss |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑌 ∈ ran 𝐼 ) → 𝑌 ⊆ ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
| 11 |
4 6 10
|
syl2anc |
⊢ ( 𝜑 → 𝑌 ⊆ ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
| 12 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ⊆ 𝑌 ) → 𝑌 ⊆ ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
| 13 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑋 ⊆ 𝑌 ) → 𝑋 ⊆ 𝑌 ) |
| 14 |
1 8 9 3
|
dochss |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑌 ⊆ ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ∧ 𝑋 ⊆ 𝑌 ) → ( ⊥ ‘ 𝑌 ) ⊆ ( ⊥ ‘ 𝑋 ) ) |
| 15 |
7 12 13 14
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑋 ⊆ 𝑌 ) → ( ⊥ ‘ 𝑌 ) ⊆ ( ⊥ ‘ 𝑋 ) ) |
| 16 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( ⊥ ‘ 𝑌 ) ⊆ ( ⊥ ‘ 𝑋 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 17 |
1 8 2 9
|
dihrnss |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → 𝑋 ⊆ ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
| 18 |
4 5 17
|
syl2anc |
⊢ ( 𝜑 → 𝑋 ⊆ ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
| 19 |
1 2 8 9 3
|
dochcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ⊆ ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ) → ( ⊥ ‘ 𝑋 ) ∈ ran 𝐼 ) |
| 20 |
4 18 19
|
syl2anc |
⊢ ( 𝜑 → ( ⊥ ‘ 𝑋 ) ∈ ran 𝐼 ) |
| 21 |
1 8 2 9
|
dihrnss |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ⊥ ‘ 𝑋 ) ∈ ran 𝐼 ) → ( ⊥ ‘ 𝑋 ) ⊆ ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
| 22 |
4 20 21
|
syl2anc |
⊢ ( 𝜑 → ( ⊥ ‘ 𝑋 ) ⊆ ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
| 23 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ ( ⊥ ‘ 𝑌 ) ⊆ ( ⊥ ‘ 𝑋 ) ) → ( ⊥ ‘ 𝑋 ) ⊆ ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
| 24 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( ⊥ ‘ 𝑌 ) ⊆ ( ⊥ ‘ 𝑋 ) ) → ( ⊥ ‘ 𝑌 ) ⊆ ( ⊥ ‘ 𝑋 ) ) |
| 25 |
1 8 9 3
|
dochss |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ⊥ ‘ 𝑋 ) ⊆ ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ∧ ( ⊥ ‘ 𝑌 ) ⊆ ( ⊥ ‘ 𝑋 ) ) → ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) ) |
| 26 |
16 23 24 25
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( ⊥ ‘ 𝑌 ) ⊆ ( ⊥ ‘ 𝑋 ) ) → ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) ) |
| 27 |
1 2 3
|
dochoc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = 𝑋 ) |
| 28 |
4 5 27
|
syl2anc |
⊢ ( 𝜑 → ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = 𝑋 ) |
| 29 |
28
|
adantr |
⊢ ( ( 𝜑 ∧ ( ⊥ ‘ 𝑌 ) ⊆ ( ⊥ ‘ 𝑋 ) ) → ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = 𝑋 ) |
| 30 |
1 2 3
|
dochoc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑌 ∈ ran 𝐼 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) = 𝑌 ) |
| 31 |
4 6 30
|
syl2anc |
⊢ ( 𝜑 → ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) = 𝑌 ) |
| 32 |
31
|
adantr |
⊢ ( ( 𝜑 ∧ ( ⊥ ‘ 𝑌 ) ⊆ ( ⊥ ‘ 𝑋 ) ) → ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) = 𝑌 ) |
| 33 |
26 29 32
|
3sstr3d |
⊢ ( ( 𝜑 ∧ ( ⊥ ‘ 𝑌 ) ⊆ ( ⊥ ‘ 𝑋 ) ) → 𝑋 ⊆ 𝑌 ) |
| 34 |
15 33
|
impbida |
⊢ ( 𝜑 → ( 𝑋 ⊆ 𝑌 ↔ ( ⊥ ‘ 𝑌 ) ⊆ ( ⊥ ‘ 𝑋 ) ) ) |