Metamath Proof Explorer


Theorem dochord

Description: Ordering law for orthocomplement. (Contributed by NM, 12-Aug-2014)

Ref Expression
Hypotheses doch11.h 𝐻 = ( LHyp ‘ 𝐾 )
doch11.i 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )
doch11.o = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
doch11.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
doch11.x ( 𝜑𝑋 ∈ ran 𝐼 )
doch11.y ( 𝜑𝑌 ∈ ran 𝐼 )
Assertion dochord ( 𝜑 → ( 𝑋𝑌 ↔ ( 𝑌 ) ⊆ ( 𝑋 ) ) )

Proof

Step Hyp Ref Expression
1 doch11.h 𝐻 = ( LHyp ‘ 𝐾 )
2 doch11.i 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )
3 doch11.o = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
4 doch11.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
5 doch11.x ( 𝜑𝑋 ∈ ran 𝐼 )
6 doch11.y ( 𝜑𝑌 ∈ ran 𝐼 )
7 4 adantr ( ( 𝜑𝑋𝑌 ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
8 eqid ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
9 eqid ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) = ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) )
10 1 8 2 9 dihrnss ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑌 ∈ ran 𝐼 ) → 𝑌 ⊆ ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) )
11 4 6 10 syl2anc ( 𝜑𝑌 ⊆ ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) )
12 11 adantr ( ( 𝜑𝑋𝑌 ) → 𝑌 ⊆ ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) )
13 simpr ( ( 𝜑𝑋𝑌 ) → 𝑋𝑌 )
14 1 8 9 3 dochss ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑌 ⊆ ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ∧ 𝑋𝑌 ) → ( 𝑌 ) ⊆ ( 𝑋 ) )
15 7 12 13 14 syl3anc ( ( 𝜑𝑋𝑌 ) → ( 𝑌 ) ⊆ ( 𝑋 ) )
16 4 adantr ( ( 𝜑 ∧ ( 𝑌 ) ⊆ ( 𝑋 ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
17 1 8 2 9 dihrnss ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → 𝑋 ⊆ ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) )
18 4 5 17 syl2anc ( 𝜑𝑋 ⊆ ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) )
19 1 2 8 9 3 dochcl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋 ⊆ ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ) → ( 𝑋 ) ∈ ran 𝐼 )
20 4 18 19 syl2anc ( 𝜑 → ( 𝑋 ) ∈ ran 𝐼 )
21 1 8 2 9 dihrnss ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋 ) ∈ ran 𝐼 ) → ( 𝑋 ) ⊆ ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) )
22 4 20 21 syl2anc ( 𝜑 → ( 𝑋 ) ⊆ ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) )
23 22 adantr ( ( 𝜑 ∧ ( 𝑌 ) ⊆ ( 𝑋 ) ) → ( 𝑋 ) ⊆ ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) )
24 simpr ( ( 𝜑 ∧ ( 𝑌 ) ⊆ ( 𝑋 ) ) → ( 𝑌 ) ⊆ ( 𝑋 ) )
25 1 8 9 3 dochss ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋 ) ⊆ ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ∧ ( 𝑌 ) ⊆ ( 𝑋 ) ) → ( ‘ ( 𝑋 ) ) ⊆ ( ‘ ( 𝑌 ) ) )
26 16 23 24 25 syl3anc ( ( 𝜑 ∧ ( 𝑌 ) ⊆ ( 𝑋 ) ) → ( ‘ ( 𝑋 ) ) ⊆ ( ‘ ( 𝑌 ) ) )
27 1 2 3 dochoc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → ( ‘ ( 𝑋 ) ) = 𝑋 )
28 4 5 27 syl2anc ( 𝜑 → ( ‘ ( 𝑋 ) ) = 𝑋 )
29 28 adantr ( ( 𝜑 ∧ ( 𝑌 ) ⊆ ( 𝑋 ) ) → ( ‘ ( 𝑋 ) ) = 𝑋 )
30 1 2 3 dochoc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑌 ∈ ran 𝐼 ) → ( ‘ ( 𝑌 ) ) = 𝑌 )
31 4 6 30 syl2anc ( 𝜑 → ( ‘ ( 𝑌 ) ) = 𝑌 )
32 31 adantr ( ( 𝜑 ∧ ( 𝑌 ) ⊆ ( 𝑋 ) ) → ( ‘ ( 𝑌 ) ) = 𝑌 )
33 26 29 32 3sstr3d ( ( 𝜑 ∧ ( 𝑌 ) ⊆ ( 𝑋 ) ) → 𝑋𝑌 )
34 15 33 impbida ( 𝜑 → ( 𝑋𝑌 ↔ ( 𝑌 ) ⊆ ( 𝑋 ) ) )