| Step |
Hyp |
Ref |
Expression |
| 1 |
|
doch11.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 2 |
|
doch11.i |
⊢ 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) |
| 3 |
|
doch11.o |
⊢ ⊥ = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
| 4 |
|
doch11.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 5 |
|
doch11.x |
⊢ ( 𝜑 → 𝑋 ∈ ran 𝐼 ) |
| 6 |
|
doch11.y |
⊢ ( 𝜑 → 𝑌 ∈ ran 𝐼 ) |
| 7 |
|
eqid |
⊢ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
| 8 |
|
eqid |
⊢ ( LSubSp ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) = ( LSubSp ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 9 |
1 7 2 8
|
dihrnlss |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → 𝑋 ∈ ( LSubSp ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
| 10 |
4 5 9
|
syl2anc |
⊢ ( 𝜑 → 𝑋 ∈ ( LSubSp ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
| 11 |
|
eqid |
⊢ ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) = ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 12 |
11 8
|
lssss |
⊢ ( 𝑋 ∈ ( LSubSp ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) → 𝑋 ⊆ ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
| 13 |
10 12
|
syl |
⊢ ( 𝜑 → 𝑋 ⊆ ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
| 14 |
1 2 7 11 3
|
dochcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ⊆ ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ) → ( ⊥ ‘ 𝑋 ) ∈ ran 𝐼 ) |
| 15 |
4 13 14
|
syl2anc |
⊢ ( 𝜑 → ( ⊥ ‘ 𝑋 ) ∈ ran 𝐼 ) |
| 16 |
1 2 3 4 15 6
|
dochord |
⊢ ( 𝜑 → ( ( ⊥ ‘ 𝑋 ) ⊆ 𝑌 ↔ ( ⊥ ‘ 𝑌 ) ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ) ) |
| 17 |
1 2 3
|
dochoc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = 𝑋 ) |
| 18 |
4 5 17
|
syl2anc |
⊢ ( 𝜑 → ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = 𝑋 ) |
| 19 |
18
|
sseq2d |
⊢ ( 𝜑 → ( ( ⊥ ‘ 𝑌 ) ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ↔ ( ⊥ ‘ 𝑌 ) ⊆ 𝑋 ) ) |
| 20 |
16 19
|
bitrd |
⊢ ( 𝜑 → ( ( ⊥ ‘ 𝑋 ) ⊆ 𝑌 ↔ ( ⊥ ‘ 𝑌 ) ⊆ 𝑋 ) ) |