Metamath Proof Explorer


Theorem dochord2N

Description: Ordering law for orthocomplement. (Contributed by NM, 29-Oct-2014) (New usage is discouraged.)

Ref Expression
Hypotheses doch11.h 𝐻 = ( LHyp ‘ 𝐾 )
doch11.i 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )
doch11.o = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
doch11.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
doch11.x ( 𝜑𝑋 ∈ ran 𝐼 )
doch11.y ( 𝜑𝑌 ∈ ran 𝐼 )
Assertion dochord2N ( 𝜑 → ( ( 𝑋 ) ⊆ 𝑌 ↔ ( 𝑌 ) ⊆ 𝑋 ) )

Proof

Step Hyp Ref Expression
1 doch11.h 𝐻 = ( LHyp ‘ 𝐾 )
2 doch11.i 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )
3 doch11.o = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
4 doch11.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
5 doch11.x ( 𝜑𝑋 ∈ ran 𝐼 )
6 doch11.y ( 𝜑𝑌 ∈ ran 𝐼 )
7 eqid ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
8 eqid ( LSubSp ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) = ( LSubSp ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) )
9 1 7 2 8 dihrnlss ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → 𝑋 ∈ ( LSubSp ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) )
10 4 5 9 syl2anc ( 𝜑𝑋 ∈ ( LSubSp ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) )
11 eqid ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) = ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) )
12 11 8 lssss ( 𝑋 ∈ ( LSubSp ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) → 𝑋 ⊆ ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) )
13 10 12 syl ( 𝜑𝑋 ⊆ ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) )
14 1 2 7 11 3 dochcl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋 ⊆ ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ) → ( 𝑋 ) ∈ ran 𝐼 )
15 4 13 14 syl2anc ( 𝜑 → ( 𝑋 ) ∈ ran 𝐼 )
16 1 2 3 4 15 6 dochord ( 𝜑 → ( ( 𝑋 ) ⊆ 𝑌 ↔ ( 𝑌 ) ⊆ ( ‘ ( 𝑋 ) ) ) )
17 1 2 3 dochoc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → ( ‘ ( 𝑋 ) ) = 𝑋 )
18 4 5 17 syl2anc ( 𝜑 → ( ‘ ( 𝑋 ) ) = 𝑋 )
19 18 sseq2d ( 𝜑 → ( ( 𝑌 ) ⊆ ( ‘ ( 𝑋 ) ) ↔ ( 𝑌 ) ⊆ 𝑋 ) )
20 16 19 bitrd ( 𝜑 → ( ( 𝑋 ) ⊆ 𝑌 ↔ ( 𝑌 ) ⊆ 𝑋 ) )