Step |
Hyp |
Ref |
Expression |
1 |
|
doch11.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
doch11.i |
⊢ 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
doch11.o |
⊢ ⊥ = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
doch11.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
5 |
|
doch11.x |
⊢ ( 𝜑 → 𝑋 ∈ ran 𝐼 ) |
6 |
|
doch11.y |
⊢ ( 𝜑 → 𝑌 ∈ ran 𝐼 ) |
7 |
|
eqid |
⊢ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
8 |
|
eqid |
⊢ ( LSubSp ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) = ( LSubSp ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) |
9 |
1 7 2 8
|
dihrnlss |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑌 ∈ ran 𝐼 ) → 𝑌 ∈ ( LSubSp ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
10 |
4 6 9
|
syl2anc |
⊢ ( 𝜑 → 𝑌 ∈ ( LSubSp ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
11 |
|
eqid |
⊢ ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) = ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) |
12 |
11 8
|
lssss |
⊢ ( 𝑌 ∈ ( LSubSp ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) → 𝑌 ⊆ ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
13 |
10 12
|
syl |
⊢ ( 𝜑 → 𝑌 ⊆ ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
14 |
1 2 7 11 3
|
dochcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑌 ⊆ ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ) → ( ⊥ ‘ 𝑌 ) ∈ ran 𝐼 ) |
15 |
4 13 14
|
syl2anc |
⊢ ( 𝜑 → ( ⊥ ‘ 𝑌 ) ∈ ran 𝐼 ) |
16 |
1 2 3 4 5 15
|
dochord |
⊢ ( 𝜑 → ( 𝑋 ⊆ ( ⊥ ‘ 𝑌 ) ↔ ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) ⊆ ( ⊥ ‘ 𝑋 ) ) ) |
17 |
1 2 3
|
dochoc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑌 ∈ ran 𝐼 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) = 𝑌 ) |
18 |
4 6 17
|
syl2anc |
⊢ ( 𝜑 → ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) = 𝑌 ) |
19 |
18
|
sseq1d |
⊢ ( 𝜑 → ( ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) ⊆ ( ⊥ ‘ 𝑋 ) ↔ 𝑌 ⊆ ( ⊥ ‘ 𝑋 ) ) ) |
20 |
16 19
|
bitrd |
⊢ ( 𝜑 → ( 𝑋 ⊆ ( ⊥ ‘ 𝑌 ) ↔ 𝑌 ⊆ ( ⊥ ‘ 𝑋 ) ) ) |