Metamath Proof Explorer


Theorem dochord3

Description: Ordering law for orthocomplement. (Contributed by NM, 9-Mar-2015)

Ref Expression
Hypotheses doch11.h 𝐻 = ( LHyp ‘ 𝐾 )
doch11.i 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )
doch11.o = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
doch11.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
doch11.x ( 𝜑𝑋 ∈ ran 𝐼 )
doch11.y ( 𝜑𝑌 ∈ ran 𝐼 )
Assertion dochord3 ( 𝜑 → ( 𝑋 ⊆ ( 𝑌 ) ↔ 𝑌 ⊆ ( 𝑋 ) ) )

Proof

Step Hyp Ref Expression
1 doch11.h 𝐻 = ( LHyp ‘ 𝐾 )
2 doch11.i 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )
3 doch11.o = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
4 doch11.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
5 doch11.x ( 𝜑𝑋 ∈ ran 𝐼 )
6 doch11.y ( 𝜑𝑌 ∈ ran 𝐼 )
7 eqid ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
8 eqid ( LSubSp ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) = ( LSubSp ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) )
9 1 7 2 8 dihrnlss ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑌 ∈ ran 𝐼 ) → 𝑌 ∈ ( LSubSp ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) )
10 4 6 9 syl2anc ( 𝜑𝑌 ∈ ( LSubSp ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) )
11 eqid ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) = ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) )
12 11 8 lssss ( 𝑌 ∈ ( LSubSp ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) → 𝑌 ⊆ ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) )
13 10 12 syl ( 𝜑𝑌 ⊆ ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) )
14 1 2 7 11 3 dochcl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑌 ⊆ ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ) → ( 𝑌 ) ∈ ran 𝐼 )
15 4 13 14 syl2anc ( 𝜑 → ( 𝑌 ) ∈ ran 𝐼 )
16 1 2 3 4 5 15 dochord ( 𝜑 → ( 𝑋 ⊆ ( 𝑌 ) ↔ ( ‘ ( 𝑌 ) ) ⊆ ( 𝑋 ) ) )
17 1 2 3 dochoc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑌 ∈ ran 𝐼 ) → ( ‘ ( 𝑌 ) ) = 𝑌 )
18 4 6 17 syl2anc ( 𝜑 → ( ‘ ( 𝑌 ) ) = 𝑌 )
19 18 sseq1d ( 𝜑 → ( ( ‘ ( 𝑌 ) ) ⊆ ( 𝑋 ) ↔ 𝑌 ⊆ ( 𝑋 ) ) )
20 16 19 bitrd ( 𝜑 → ( 𝑋 ⊆ ( 𝑌 ) ↔ 𝑌 ⊆ ( 𝑋 ) ) )