Metamath Proof Explorer


Theorem dochord2N

Description: Ordering law for orthocomplement. (Contributed by NM, 29-Oct-2014) (New usage is discouraged.)

Ref Expression
Hypotheses doch11.h H = LHyp K
doch11.i I = DIsoH K W
doch11.o ˙ = ocH K W
doch11.k φ K HL W H
doch11.x φ X ran I
doch11.y φ Y ran I
Assertion dochord2N φ ˙ X Y ˙ Y X

Proof

Step Hyp Ref Expression
1 doch11.h H = LHyp K
2 doch11.i I = DIsoH K W
3 doch11.o ˙ = ocH K W
4 doch11.k φ K HL W H
5 doch11.x φ X ran I
6 doch11.y φ Y ran I
7 eqid DVecH K W = DVecH K W
8 eqid LSubSp DVecH K W = LSubSp DVecH K W
9 1 7 2 8 dihrnlss K HL W H X ran I X LSubSp DVecH K W
10 4 5 9 syl2anc φ X LSubSp DVecH K W
11 eqid Base DVecH K W = Base DVecH K W
12 11 8 lssss X LSubSp DVecH K W X Base DVecH K W
13 10 12 syl φ X Base DVecH K W
14 1 2 7 11 3 dochcl K HL W H X Base DVecH K W ˙ X ran I
15 4 13 14 syl2anc φ ˙ X ran I
16 1 2 3 4 15 6 dochord φ ˙ X Y ˙ Y ˙ ˙ X
17 1 2 3 dochoc K HL W H X ran I ˙ ˙ X = X
18 4 5 17 syl2anc φ ˙ ˙ X = X
19 18 sseq2d φ ˙ Y ˙ ˙ X ˙ Y X
20 16 19 bitrd φ ˙ X Y ˙ Y X