| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dochss.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 2 |
|
dochss.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
| 3 |
|
dochss.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
| 4 |
|
dochss.o |
⊢ ⊥ = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
| 5 |
|
simp1l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑌 ⊆ 𝑉 ∧ 𝑋 ⊆ 𝑌 ) → 𝐾 ∈ HL ) |
| 6 |
|
hlclat |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ CLat ) |
| 7 |
5 6
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑌 ⊆ 𝑉 ∧ 𝑋 ⊆ 𝑌 ) → 𝐾 ∈ CLat ) |
| 8 |
|
ssrab2 |
⊢ { 𝑧 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑧 ) } ⊆ ( Base ‘ 𝐾 ) |
| 9 |
8
|
a1i |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑌 ⊆ 𝑉 ∧ 𝑋 ⊆ 𝑌 ) → { 𝑧 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑧 ) } ⊆ ( Base ‘ 𝐾 ) ) |
| 10 |
|
simpll3 |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑌 ⊆ 𝑉 ∧ 𝑋 ⊆ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝐾 ) ) ∧ 𝑌 ⊆ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑧 ) ) → 𝑋 ⊆ 𝑌 ) |
| 11 |
|
simpr |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑌 ⊆ 𝑉 ∧ 𝑋 ⊆ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝐾 ) ) ∧ 𝑌 ⊆ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑧 ) ) → 𝑌 ⊆ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑧 ) ) |
| 12 |
10 11
|
sstrd |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑌 ⊆ 𝑉 ∧ 𝑋 ⊆ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝐾 ) ) ∧ 𝑌 ⊆ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑧 ) ) → 𝑋 ⊆ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑧 ) ) |
| 13 |
12
|
ex |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑌 ⊆ 𝑉 ∧ 𝑋 ⊆ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝐾 ) ) → ( 𝑌 ⊆ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑧 ) → 𝑋 ⊆ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑧 ) ) ) |
| 14 |
13
|
ss2rabdv |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑌 ⊆ 𝑉 ∧ 𝑋 ⊆ 𝑌 ) → { 𝑧 ∈ ( Base ‘ 𝐾 ) ∣ 𝑌 ⊆ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑧 ) } ⊆ { 𝑧 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑧 ) } ) |
| 15 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
| 16 |
|
eqid |
⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) |
| 17 |
|
eqid |
⊢ ( glb ‘ 𝐾 ) = ( glb ‘ 𝐾 ) |
| 18 |
15 16 17
|
clatglbss |
⊢ ( ( 𝐾 ∈ CLat ∧ { 𝑧 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑧 ) } ⊆ ( Base ‘ 𝐾 ) ∧ { 𝑧 ∈ ( Base ‘ 𝐾 ) ∣ 𝑌 ⊆ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑧 ) } ⊆ { 𝑧 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑧 ) } ) → ( ( glb ‘ 𝐾 ) ‘ { 𝑧 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑧 ) } ) ( le ‘ 𝐾 ) ( ( glb ‘ 𝐾 ) ‘ { 𝑧 ∈ ( Base ‘ 𝐾 ) ∣ 𝑌 ⊆ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑧 ) } ) ) |
| 19 |
7 9 14 18
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑌 ⊆ 𝑉 ∧ 𝑋 ⊆ 𝑌 ) → ( ( glb ‘ 𝐾 ) ‘ { 𝑧 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑧 ) } ) ( le ‘ 𝐾 ) ( ( glb ‘ 𝐾 ) ‘ { 𝑧 ∈ ( Base ‘ 𝐾 ) ∣ 𝑌 ⊆ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑧 ) } ) ) |
| 20 |
|
hlop |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ OP ) |
| 21 |
5 20
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑌 ⊆ 𝑉 ∧ 𝑋 ⊆ 𝑌 ) → 𝐾 ∈ OP ) |
| 22 |
15 17
|
clatglbcl |
⊢ ( ( 𝐾 ∈ CLat ∧ { 𝑧 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑧 ) } ⊆ ( Base ‘ 𝐾 ) ) → ( ( glb ‘ 𝐾 ) ‘ { 𝑧 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑧 ) } ) ∈ ( Base ‘ 𝐾 ) ) |
| 23 |
7 8 22
|
sylancl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑌 ⊆ 𝑉 ∧ 𝑋 ⊆ 𝑌 ) → ( ( glb ‘ 𝐾 ) ‘ { 𝑧 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑧 ) } ) ∈ ( Base ‘ 𝐾 ) ) |
| 24 |
|
ssrab2 |
⊢ { 𝑧 ∈ ( Base ‘ 𝐾 ) ∣ 𝑌 ⊆ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑧 ) } ⊆ ( Base ‘ 𝐾 ) |
| 25 |
15 17
|
clatglbcl |
⊢ ( ( 𝐾 ∈ CLat ∧ { 𝑧 ∈ ( Base ‘ 𝐾 ) ∣ 𝑌 ⊆ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑧 ) } ⊆ ( Base ‘ 𝐾 ) ) → ( ( glb ‘ 𝐾 ) ‘ { 𝑧 ∈ ( Base ‘ 𝐾 ) ∣ 𝑌 ⊆ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑧 ) } ) ∈ ( Base ‘ 𝐾 ) ) |
| 26 |
7 24 25
|
sylancl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑌 ⊆ 𝑉 ∧ 𝑋 ⊆ 𝑌 ) → ( ( glb ‘ 𝐾 ) ‘ { 𝑧 ∈ ( Base ‘ 𝐾 ) ∣ 𝑌 ⊆ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑧 ) } ) ∈ ( Base ‘ 𝐾 ) ) |
| 27 |
|
eqid |
⊢ ( oc ‘ 𝐾 ) = ( oc ‘ 𝐾 ) |
| 28 |
15 16 27
|
oplecon3b |
⊢ ( ( 𝐾 ∈ OP ∧ ( ( glb ‘ 𝐾 ) ‘ { 𝑧 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑧 ) } ) ∈ ( Base ‘ 𝐾 ) ∧ ( ( glb ‘ 𝐾 ) ‘ { 𝑧 ∈ ( Base ‘ 𝐾 ) ∣ 𝑌 ⊆ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑧 ) } ) ∈ ( Base ‘ 𝐾 ) ) → ( ( ( glb ‘ 𝐾 ) ‘ { 𝑧 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑧 ) } ) ( le ‘ 𝐾 ) ( ( glb ‘ 𝐾 ) ‘ { 𝑧 ∈ ( Base ‘ 𝐾 ) ∣ 𝑌 ⊆ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑧 ) } ) ↔ ( ( oc ‘ 𝐾 ) ‘ ( ( glb ‘ 𝐾 ) ‘ { 𝑧 ∈ ( Base ‘ 𝐾 ) ∣ 𝑌 ⊆ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑧 ) } ) ) ( le ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ ( ( glb ‘ 𝐾 ) ‘ { 𝑧 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑧 ) } ) ) ) ) |
| 29 |
21 23 26 28
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑌 ⊆ 𝑉 ∧ 𝑋 ⊆ 𝑌 ) → ( ( ( glb ‘ 𝐾 ) ‘ { 𝑧 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑧 ) } ) ( le ‘ 𝐾 ) ( ( glb ‘ 𝐾 ) ‘ { 𝑧 ∈ ( Base ‘ 𝐾 ) ∣ 𝑌 ⊆ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑧 ) } ) ↔ ( ( oc ‘ 𝐾 ) ‘ ( ( glb ‘ 𝐾 ) ‘ { 𝑧 ∈ ( Base ‘ 𝐾 ) ∣ 𝑌 ⊆ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑧 ) } ) ) ( le ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ ( ( glb ‘ 𝐾 ) ‘ { 𝑧 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑧 ) } ) ) ) ) |
| 30 |
19 29
|
mpbid |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑌 ⊆ 𝑉 ∧ 𝑋 ⊆ 𝑌 ) → ( ( oc ‘ 𝐾 ) ‘ ( ( glb ‘ 𝐾 ) ‘ { 𝑧 ∈ ( Base ‘ 𝐾 ) ∣ 𝑌 ⊆ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑧 ) } ) ) ( le ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ ( ( glb ‘ 𝐾 ) ‘ { 𝑧 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑧 ) } ) ) ) |
| 31 |
|
simp1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑌 ⊆ 𝑉 ∧ 𝑋 ⊆ 𝑌 ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 32 |
15 27
|
opoccl |
⊢ ( ( 𝐾 ∈ OP ∧ ( ( glb ‘ 𝐾 ) ‘ { 𝑧 ∈ ( Base ‘ 𝐾 ) ∣ 𝑌 ⊆ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑧 ) } ) ∈ ( Base ‘ 𝐾 ) ) → ( ( oc ‘ 𝐾 ) ‘ ( ( glb ‘ 𝐾 ) ‘ { 𝑧 ∈ ( Base ‘ 𝐾 ) ∣ 𝑌 ⊆ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑧 ) } ) ) ∈ ( Base ‘ 𝐾 ) ) |
| 33 |
21 26 32
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑌 ⊆ 𝑉 ∧ 𝑋 ⊆ 𝑌 ) → ( ( oc ‘ 𝐾 ) ‘ ( ( glb ‘ 𝐾 ) ‘ { 𝑧 ∈ ( Base ‘ 𝐾 ) ∣ 𝑌 ⊆ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑧 ) } ) ) ∈ ( Base ‘ 𝐾 ) ) |
| 34 |
15 27
|
opoccl |
⊢ ( ( 𝐾 ∈ OP ∧ ( ( glb ‘ 𝐾 ) ‘ { 𝑧 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑧 ) } ) ∈ ( Base ‘ 𝐾 ) ) → ( ( oc ‘ 𝐾 ) ‘ ( ( glb ‘ 𝐾 ) ‘ { 𝑧 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑧 ) } ) ) ∈ ( Base ‘ 𝐾 ) ) |
| 35 |
21 23 34
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑌 ⊆ 𝑉 ∧ 𝑋 ⊆ 𝑌 ) → ( ( oc ‘ 𝐾 ) ‘ ( ( glb ‘ 𝐾 ) ‘ { 𝑧 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑧 ) } ) ) ∈ ( Base ‘ 𝐾 ) ) |
| 36 |
|
eqid |
⊢ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) |
| 37 |
15 16 1 36
|
dihord |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( oc ‘ 𝐾 ) ‘ ( ( glb ‘ 𝐾 ) ‘ { 𝑧 ∈ ( Base ‘ 𝐾 ) ∣ 𝑌 ⊆ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑧 ) } ) ) ∈ ( Base ‘ 𝐾 ) ∧ ( ( oc ‘ 𝐾 ) ‘ ( ( glb ‘ 𝐾 ) ‘ { 𝑧 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑧 ) } ) ) ∈ ( Base ‘ 𝐾 ) ) → ( ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( oc ‘ 𝐾 ) ‘ ( ( glb ‘ 𝐾 ) ‘ { 𝑧 ∈ ( Base ‘ 𝐾 ) ∣ 𝑌 ⊆ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑧 ) } ) ) ) ⊆ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( oc ‘ 𝐾 ) ‘ ( ( glb ‘ 𝐾 ) ‘ { 𝑧 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑧 ) } ) ) ) ↔ ( ( oc ‘ 𝐾 ) ‘ ( ( glb ‘ 𝐾 ) ‘ { 𝑧 ∈ ( Base ‘ 𝐾 ) ∣ 𝑌 ⊆ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑧 ) } ) ) ( le ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ ( ( glb ‘ 𝐾 ) ‘ { 𝑧 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑧 ) } ) ) ) ) |
| 38 |
31 33 35 37
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑌 ⊆ 𝑉 ∧ 𝑋 ⊆ 𝑌 ) → ( ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( oc ‘ 𝐾 ) ‘ ( ( glb ‘ 𝐾 ) ‘ { 𝑧 ∈ ( Base ‘ 𝐾 ) ∣ 𝑌 ⊆ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑧 ) } ) ) ) ⊆ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( oc ‘ 𝐾 ) ‘ ( ( glb ‘ 𝐾 ) ‘ { 𝑧 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑧 ) } ) ) ) ↔ ( ( oc ‘ 𝐾 ) ‘ ( ( glb ‘ 𝐾 ) ‘ { 𝑧 ∈ ( Base ‘ 𝐾 ) ∣ 𝑌 ⊆ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑧 ) } ) ) ( le ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ ( ( glb ‘ 𝐾 ) ‘ { 𝑧 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑧 ) } ) ) ) ) |
| 39 |
30 38
|
mpbird |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑌 ⊆ 𝑉 ∧ 𝑋 ⊆ 𝑌 ) → ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( oc ‘ 𝐾 ) ‘ ( ( glb ‘ 𝐾 ) ‘ { 𝑧 ∈ ( Base ‘ 𝐾 ) ∣ 𝑌 ⊆ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑧 ) } ) ) ) ⊆ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( oc ‘ 𝐾 ) ‘ ( ( glb ‘ 𝐾 ) ‘ { 𝑧 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑧 ) } ) ) ) ) |
| 40 |
15 17 27 1 36 2 3 4
|
dochval |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑌 ⊆ 𝑉 ) → ( ⊥ ‘ 𝑌 ) = ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( oc ‘ 𝐾 ) ‘ ( ( glb ‘ 𝐾 ) ‘ { 𝑧 ∈ ( Base ‘ 𝐾 ) ∣ 𝑌 ⊆ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑧 ) } ) ) ) ) |
| 41 |
40
|
3adant3 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑌 ⊆ 𝑉 ∧ 𝑋 ⊆ 𝑌 ) → ( ⊥ ‘ 𝑌 ) = ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( oc ‘ 𝐾 ) ‘ ( ( glb ‘ 𝐾 ) ‘ { 𝑧 ∈ ( Base ‘ 𝐾 ) ∣ 𝑌 ⊆ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑧 ) } ) ) ) ) |
| 42 |
|
simp3 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑌 ⊆ 𝑉 ∧ 𝑋 ⊆ 𝑌 ) → 𝑋 ⊆ 𝑌 ) |
| 43 |
|
simp2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑌 ⊆ 𝑉 ∧ 𝑋 ⊆ 𝑌 ) → 𝑌 ⊆ 𝑉 ) |
| 44 |
42 43
|
sstrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑌 ⊆ 𝑉 ∧ 𝑋 ⊆ 𝑌 ) → 𝑋 ⊆ 𝑉 ) |
| 45 |
15 17 27 1 36 2 3 4
|
dochval |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ⊆ 𝑉 ) → ( ⊥ ‘ 𝑋 ) = ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( oc ‘ 𝐾 ) ‘ ( ( glb ‘ 𝐾 ) ‘ { 𝑧 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑧 ) } ) ) ) ) |
| 46 |
31 44 45
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑌 ⊆ 𝑉 ∧ 𝑋 ⊆ 𝑌 ) → ( ⊥ ‘ 𝑋 ) = ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( oc ‘ 𝐾 ) ‘ ( ( glb ‘ 𝐾 ) ‘ { 𝑧 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑧 ) } ) ) ) ) |
| 47 |
39 41 46
|
3sstr4d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑌 ⊆ 𝑉 ∧ 𝑋 ⊆ 𝑌 ) → ( ⊥ ‘ 𝑌 ) ⊆ ( ⊥ ‘ 𝑋 ) ) |