Metamath Proof Explorer


Theorem dochss

Description: Subset law for orthocomplement. (Contributed by NM, 16-Apr-2014)

Ref Expression
Hypotheses dochss.h 𝐻 = ( LHyp ‘ 𝐾 )
dochss.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
dochss.v 𝑉 = ( Base ‘ 𝑈 )
dochss.o = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
Assertion dochss ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑌𝑉𝑋𝑌 ) → ( 𝑌 ) ⊆ ( 𝑋 ) )

Proof

Step Hyp Ref Expression
1 dochss.h 𝐻 = ( LHyp ‘ 𝐾 )
2 dochss.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
3 dochss.v 𝑉 = ( Base ‘ 𝑈 )
4 dochss.o = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
5 simp1l ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑌𝑉𝑋𝑌 ) → 𝐾 ∈ HL )
6 hlclat ( 𝐾 ∈ HL → 𝐾 ∈ CLat )
7 5 6 syl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑌𝑉𝑋𝑌 ) → 𝐾 ∈ CLat )
8 ssrab2 { 𝑧 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑧 ) } ⊆ ( Base ‘ 𝐾 )
9 8 a1i ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑌𝑉𝑋𝑌 ) → { 𝑧 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑧 ) } ⊆ ( Base ‘ 𝐾 ) )
10 simpll3 ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑌𝑉𝑋𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝐾 ) ) ∧ 𝑌 ⊆ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑧 ) ) → 𝑋𝑌 )
11 simpr ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑌𝑉𝑋𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝐾 ) ) ∧ 𝑌 ⊆ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑧 ) ) → 𝑌 ⊆ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑧 ) )
12 10 11 sstrd ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑌𝑉𝑋𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝐾 ) ) ∧ 𝑌 ⊆ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑧 ) ) → 𝑋 ⊆ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑧 ) )
13 12 ex ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑌𝑉𝑋𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝐾 ) ) → ( 𝑌 ⊆ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑧 ) → 𝑋 ⊆ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑧 ) ) )
14 13 ss2rabdv ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑌𝑉𝑋𝑌 ) → { 𝑧 ∈ ( Base ‘ 𝐾 ) ∣ 𝑌 ⊆ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑧 ) } ⊆ { 𝑧 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑧 ) } )
15 eqid ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 )
16 eqid ( le ‘ 𝐾 ) = ( le ‘ 𝐾 )
17 eqid ( glb ‘ 𝐾 ) = ( glb ‘ 𝐾 )
18 15 16 17 clatglbss ( ( 𝐾 ∈ CLat ∧ { 𝑧 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑧 ) } ⊆ ( Base ‘ 𝐾 ) ∧ { 𝑧 ∈ ( Base ‘ 𝐾 ) ∣ 𝑌 ⊆ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑧 ) } ⊆ { 𝑧 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑧 ) } ) → ( ( glb ‘ 𝐾 ) ‘ { 𝑧 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑧 ) } ) ( le ‘ 𝐾 ) ( ( glb ‘ 𝐾 ) ‘ { 𝑧 ∈ ( Base ‘ 𝐾 ) ∣ 𝑌 ⊆ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑧 ) } ) )
19 7 9 14 18 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑌𝑉𝑋𝑌 ) → ( ( glb ‘ 𝐾 ) ‘ { 𝑧 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑧 ) } ) ( le ‘ 𝐾 ) ( ( glb ‘ 𝐾 ) ‘ { 𝑧 ∈ ( Base ‘ 𝐾 ) ∣ 𝑌 ⊆ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑧 ) } ) )
20 hlop ( 𝐾 ∈ HL → 𝐾 ∈ OP )
21 5 20 syl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑌𝑉𝑋𝑌 ) → 𝐾 ∈ OP )
22 15 17 clatglbcl ( ( 𝐾 ∈ CLat ∧ { 𝑧 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑧 ) } ⊆ ( Base ‘ 𝐾 ) ) → ( ( glb ‘ 𝐾 ) ‘ { 𝑧 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑧 ) } ) ∈ ( Base ‘ 𝐾 ) )
23 7 8 22 sylancl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑌𝑉𝑋𝑌 ) → ( ( glb ‘ 𝐾 ) ‘ { 𝑧 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑧 ) } ) ∈ ( Base ‘ 𝐾 ) )
24 ssrab2 { 𝑧 ∈ ( Base ‘ 𝐾 ) ∣ 𝑌 ⊆ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑧 ) } ⊆ ( Base ‘ 𝐾 )
25 15 17 clatglbcl ( ( 𝐾 ∈ CLat ∧ { 𝑧 ∈ ( Base ‘ 𝐾 ) ∣ 𝑌 ⊆ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑧 ) } ⊆ ( Base ‘ 𝐾 ) ) → ( ( glb ‘ 𝐾 ) ‘ { 𝑧 ∈ ( Base ‘ 𝐾 ) ∣ 𝑌 ⊆ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑧 ) } ) ∈ ( Base ‘ 𝐾 ) )
26 7 24 25 sylancl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑌𝑉𝑋𝑌 ) → ( ( glb ‘ 𝐾 ) ‘ { 𝑧 ∈ ( Base ‘ 𝐾 ) ∣ 𝑌 ⊆ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑧 ) } ) ∈ ( Base ‘ 𝐾 ) )
27 eqid ( oc ‘ 𝐾 ) = ( oc ‘ 𝐾 )
28 15 16 27 oplecon3b ( ( 𝐾 ∈ OP ∧ ( ( glb ‘ 𝐾 ) ‘ { 𝑧 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑧 ) } ) ∈ ( Base ‘ 𝐾 ) ∧ ( ( glb ‘ 𝐾 ) ‘ { 𝑧 ∈ ( Base ‘ 𝐾 ) ∣ 𝑌 ⊆ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑧 ) } ) ∈ ( Base ‘ 𝐾 ) ) → ( ( ( glb ‘ 𝐾 ) ‘ { 𝑧 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑧 ) } ) ( le ‘ 𝐾 ) ( ( glb ‘ 𝐾 ) ‘ { 𝑧 ∈ ( Base ‘ 𝐾 ) ∣ 𝑌 ⊆ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑧 ) } ) ↔ ( ( oc ‘ 𝐾 ) ‘ ( ( glb ‘ 𝐾 ) ‘ { 𝑧 ∈ ( Base ‘ 𝐾 ) ∣ 𝑌 ⊆ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑧 ) } ) ) ( le ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ ( ( glb ‘ 𝐾 ) ‘ { 𝑧 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑧 ) } ) ) ) )
29 21 23 26 28 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑌𝑉𝑋𝑌 ) → ( ( ( glb ‘ 𝐾 ) ‘ { 𝑧 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑧 ) } ) ( le ‘ 𝐾 ) ( ( glb ‘ 𝐾 ) ‘ { 𝑧 ∈ ( Base ‘ 𝐾 ) ∣ 𝑌 ⊆ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑧 ) } ) ↔ ( ( oc ‘ 𝐾 ) ‘ ( ( glb ‘ 𝐾 ) ‘ { 𝑧 ∈ ( Base ‘ 𝐾 ) ∣ 𝑌 ⊆ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑧 ) } ) ) ( le ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ ( ( glb ‘ 𝐾 ) ‘ { 𝑧 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑧 ) } ) ) ) )
30 19 29 mpbid ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑌𝑉𝑋𝑌 ) → ( ( oc ‘ 𝐾 ) ‘ ( ( glb ‘ 𝐾 ) ‘ { 𝑧 ∈ ( Base ‘ 𝐾 ) ∣ 𝑌 ⊆ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑧 ) } ) ) ( le ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ ( ( glb ‘ 𝐾 ) ‘ { 𝑧 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑧 ) } ) ) )
31 simp1 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑌𝑉𝑋𝑌 ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
32 15 27 opoccl ( ( 𝐾 ∈ OP ∧ ( ( glb ‘ 𝐾 ) ‘ { 𝑧 ∈ ( Base ‘ 𝐾 ) ∣ 𝑌 ⊆ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑧 ) } ) ∈ ( Base ‘ 𝐾 ) ) → ( ( oc ‘ 𝐾 ) ‘ ( ( glb ‘ 𝐾 ) ‘ { 𝑧 ∈ ( Base ‘ 𝐾 ) ∣ 𝑌 ⊆ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑧 ) } ) ) ∈ ( Base ‘ 𝐾 ) )
33 21 26 32 syl2anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑌𝑉𝑋𝑌 ) → ( ( oc ‘ 𝐾 ) ‘ ( ( glb ‘ 𝐾 ) ‘ { 𝑧 ∈ ( Base ‘ 𝐾 ) ∣ 𝑌 ⊆ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑧 ) } ) ) ∈ ( Base ‘ 𝐾 ) )
34 15 27 opoccl ( ( 𝐾 ∈ OP ∧ ( ( glb ‘ 𝐾 ) ‘ { 𝑧 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑧 ) } ) ∈ ( Base ‘ 𝐾 ) ) → ( ( oc ‘ 𝐾 ) ‘ ( ( glb ‘ 𝐾 ) ‘ { 𝑧 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑧 ) } ) ) ∈ ( Base ‘ 𝐾 ) )
35 21 23 34 syl2anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑌𝑉𝑋𝑌 ) → ( ( oc ‘ 𝐾 ) ‘ ( ( glb ‘ 𝐾 ) ‘ { 𝑧 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑧 ) } ) ) ∈ ( Base ‘ 𝐾 ) )
36 eqid ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )
37 15 16 1 36 dihord ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( oc ‘ 𝐾 ) ‘ ( ( glb ‘ 𝐾 ) ‘ { 𝑧 ∈ ( Base ‘ 𝐾 ) ∣ 𝑌 ⊆ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑧 ) } ) ) ∈ ( Base ‘ 𝐾 ) ∧ ( ( oc ‘ 𝐾 ) ‘ ( ( glb ‘ 𝐾 ) ‘ { 𝑧 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑧 ) } ) ) ∈ ( Base ‘ 𝐾 ) ) → ( ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( oc ‘ 𝐾 ) ‘ ( ( glb ‘ 𝐾 ) ‘ { 𝑧 ∈ ( Base ‘ 𝐾 ) ∣ 𝑌 ⊆ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑧 ) } ) ) ) ⊆ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( oc ‘ 𝐾 ) ‘ ( ( glb ‘ 𝐾 ) ‘ { 𝑧 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑧 ) } ) ) ) ↔ ( ( oc ‘ 𝐾 ) ‘ ( ( glb ‘ 𝐾 ) ‘ { 𝑧 ∈ ( Base ‘ 𝐾 ) ∣ 𝑌 ⊆ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑧 ) } ) ) ( le ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ ( ( glb ‘ 𝐾 ) ‘ { 𝑧 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑧 ) } ) ) ) )
38 31 33 35 37 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑌𝑉𝑋𝑌 ) → ( ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( oc ‘ 𝐾 ) ‘ ( ( glb ‘ 𝐾 ) ‘ { 𝑧 ∈ ( Base ‘ 𝐾 ) ∣ 𝑌 ⊆ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑧 ) } ) ) ) ⊆ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( oc ‘ 𝐾 ) ‘ ( ( glb ‘ 𝐾 ) ‘ { 𝑧 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑧 ) } ) ) ) ↔ ( ( oc ‘ 𝐾 ) ‘ ( ( glb ‘ 𝐾 ) ‘ { 𝑧 ∈ ( Base ‘ 𝐾 ) ∣ 𝑌 ⊆ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑧 ) } ) ) ( le ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ ( ( glb ‘ 𝐾 ) ‘ { 𝑧 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑧 ) } ) ) ) )
39 30 38 mpbird ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑌𝑉𝑋𝑌 ) → ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( oc ‘ 𝐾 ) ‘ ( ( glb ‘ 𝐾 ) ‘ { 𝑧 ∈ ( Base ‘ 𝐾 ) ∣ 𝑌 ⊆ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑧 ) } ) ) ) ⊆ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( oc ‘ 𝐾 ) ‘ ( ( glb ‘ 𝐾 ) ‘ { 𝑧 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑧 ) } ) ) ) )
40 15 17 27 1 36 2 3 4 dochval ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑌𝑉 ) → ( 𝑌 ) = ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( oc ‘ 𝐾 ) ‘ ( ( glb ‘ 𝐾 ) ‘ { 𝑧 ∈ ( Base ‘ 𝐾 ) ∣ 𝑌 ⊆ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑧 ) } ) ) ) )
41 40 3adant3 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑌𝑉𝑋𝑌 ) → ( 𝑌 ) = ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( oc ‘ 𝐾 ) ‘ ( ( glb ‘ 𝐾 ) ‘ { 𝑧 ∈ ( Base ‘ 𝐾 ) ∣ 𝑌 ⊆ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑧 ) } ) ) ) )
42 simp3 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑌𝑉𝑋𝑌 ) → 𝑋𝑌 )
43 simp2 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑌𝑉𝑋𝑌 ) → 𝑌𝑉 )
44 42 43 sstrd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑌𝑉𝑋𝑌 ) → 𝑋𝑉 )
45 15 17 27 1 36 2 3 4 dochval ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋𝑉 ) → ( 𝑋 ) = ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( oc ‘ 𝐾 ) ‘ ( ( glb ‘ 𝐾 ) ‘ { 𝑧 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑧 ) } ) ) ) )
46 31 44 45 syl2anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑌𝑉𝑋𝑌 ) → ( 𝑋 ) = ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( oc ‘ 𝐾 ) ‘ ( ( glb ‘ 𝐾 ) ‘ { 𝑧 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑧 ) } ) ) ) )
47 39 41 46 3sstr4d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑌𝑉𝑋𝑌 ) → ( 𝑌 ) ⊆ ( 𝑋 ) )