| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dochss.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 2 |
|
dochss.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
| 3 |
|
dochss.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
| 4 |
|
dochss.o |
⊢ ⊥ = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
| 5 |
|
ssintub |
⊢ 𝑋 ⊆ ∩ { 𝑧 ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ∣ 𝑋 ⊆ 𝑧 } |
| 6 |
|
eqid |
⊢ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) |
| 7 |
1 6 2 3 4
|
dochcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ⊆ 𝑉 ) → ( ⊥ ‘ 𝑋 ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 8 |
|
eqid |
⊢ ( oc ‘ 𝐾 ) = ( oc ‘ 𝐾 ) |
| 9 |
8 1 6 4
|
dochvalr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ⊥ ‘ 𝑋 ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) → ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( oc ‘ 𝐾 ) ‘ ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ⊥ ‘ 𝑋 ) ) ) ) ) |
| 10 |
7 9
|
syldan |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ⊆ 𝑉 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( oc ‘ 𝐾 ) ‘ ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ⊥ ‘ 𝑋 ) ) ) ) ) |
| 11 |
8 1 6 2 3 4
|
dochval2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ⊆ 𝑉 ) → ( ⊥ ‘ 𝑋 ) = ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( oc ‘ 𝐾 ) ‘ ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ∩ { 𝑧 ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ∣ 𝑋 ⊆ 𝑧 } ) ) ) ) |
| 12 |
11
|
fveq2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ⊆ 𝑉 ) → ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ⊥ ‘ 𝑋 ) ) = ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( oc ‘ 𝐾 ) ‘ ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ∩ { 𝑧 ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ∣ 𝑋 ⊆ 𝑧 } ) ) ) ) ) |
| 13 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
| 14 |
|
eqid |
⊢ ( LSubSp ‘ 𝑈 ) = ( LSubSp ‘ 𝑈 ) |
| 15 |
13 1 6 2 14
|
dihf11 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) : ( Base ‘ 𝐾 ) –1-1→ ( LSubSp ‘ 𝑈 ) ) |
| 16 |
15
|
adantr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ⊆ 𝑉 ) → ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) : ( Base ‘ 𝐾 ) –1-1→ ( LSubSp ‘ 𝑈 ) ) |
| 17 |
|
f1f1orn |
⊢ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) : ( Base ‘ 𝐾 ) –1-1→ ( LSubSp ‘ 𝑈 ) → ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) : ( Base ‘ 𝐾 ) –1-1-onto→ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 18 |
16 17
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ⊆ 𝑉 ) → ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) : ( Base ‘ 𝐾 ) –1-1-onto→ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 19 |
|
hlop |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ OP ) |
| 20 |
19
|
ad2antrr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ⊆ 𝑉 ) → 𝐾 ∈ OP ) |
| 21 |
|
simpl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ⊆ 𝑉 ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 22 |
|
ssrab2 |
⊢ { 𝑧 ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ∣ 𝑋 ⊆ 𝑧 } ⊆ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) |
| 23 |
22
|
a1i |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ⊆ 𝑉 ) → { 𝑧 ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ∣ 𝑋 ⊆ 𝑧 } ⊆ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 24 |
|
eqid |
⊢ ( 1. ‘ 𝐾 ) = ( 1. ‘ 𝐾 ) |
| 25 |
24 1 6 2 3
|
dih1 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 1. ‘ 𝐾 ) ) = 𝑉 ) |
| 26 |
25
|
adantr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ⊆ 𝑉 ) → ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 1. ‘ 𝐾 ) ) = 𝑉 ) |
| 27 |
|
f1fn |
⊢ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) : ( Base ‘ 𝐾 ) –1-1→ ( LSubSp ‘ 𝑈 ) → ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) Fn ( Base ‘ 𝐾 ) ) |
| 28 |
16 27
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ⊆ 𝑉 ) → ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) Fn ( Base ‘ 𝐾 ) ) |
| 29 |
13 24
|
op1cl |
⊢ ( 𝐾 ∈ OP → ( 1. ‘ 𝐾 ) ∈ ( Base ‘ 𝐾 ) ) |
| 30 |
20 29
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ⊆ 𝑉 ) → ( 1. ‘ 𝐾 ) ∈ ( Base ‘ 𝐾 ) ) |
| 31 |
|
fnfvelrn |
⊢ ( ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) Fn ( Base ‘ 𝐾 ) ∧ ( 1. ‘ 𝐾 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 1. ‘ 𝐾 ) ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 32 |
28 30 31
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ⊆ 𝑉 ) → ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 1. ‘ 𝐾 ) ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 33 |
26 32
|
eqeltrrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ⊆ 𝑉 ) → 𝑉 ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 34 |
|
simpr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ⊆ 𝑉 ) → 𝑋 ⊆ 𝑉 ) |
| 35 |
|
sseq2 |
⊢ ( 𝑧 = 𝑉 → ( 𝑋 ⊆ 𝑧 ↔ 𝑋 ⊆ 𝑉 ) ) |
| 36 |
35
|
elrab |
⊢ ( 𝑉 ∈ { 𝑧 ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ∣ 𝑋 ⊆ 𝑧 } ↔ ( 𝑉 ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑋 ⊆ 𝑉 ) ) |
| 37 |
33 34 36
|
sylanbrc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ⊆ 𝑉 ) → 𝑉 ∈ { 𝑧 ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ∣ 𝑋 ⊆ 𝑧 } ) |
| 38 |
37
|
ne0d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ⊆ 𝑉 ) → { 𝑧 ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ∣ 𝑋 ⊆ 𝑧 } ≠ ∅ ) |
| 39 |
1 6
|
dihintcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( { 𝑧 ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ∣ 𝑋 ⊆ 𝑧 } ⊆ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ∧ { 𝑧 ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ∣ 𝑋 ⊆ 𝑧 } ≠ ∅ ) ) → ∩ { 𝑧 ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ∣ 𝑋 ⊆ 𝑧 } ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 40 |
21 23 38 39
|
syl12anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ⊆ 𝑉 ) → ∩ { 𝑧 ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ∣ 𝑋 ⊆ 𝑧 } ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 41 |
|
f1ocnvdm |
⊢ ( ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) : ( Base ‘ 𝐾 ) –1-1-onto→ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ∧ ∩ { 𝑧 ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ∣ 𝑋 ⊆ 𝑧 } ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) → ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ∩ { 𝑧 ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ∣ 𝑋 ⊆ 𝑧 } ) ∈ ( Base ‘ 𝐾 ) ) |
| 42 |
18 40 41
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ⊆ 𝑉 ) → ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ∩ { 𝑧 ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ∣ 𝑋 ⊆ 𝑧 } ) ∈ ( Base ‘ 𝐾 ) ) |
| 43 |
13 8
|
opoccl |
⊢ ( ( 𝐾 ∈ OP ∧ ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ∩ { 𝑧 ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ∣ 𝑋 ⊆ 𝑧 } ) ∈ ( Base ‘ 𝐾 ) ) → ( ( oc ‘ 𝐾 ) ‘ ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ∩ { 𝑧 ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ∣ 𝑋 ⊆ 𝑧 } ) ) ∈ ( Base ‘ 𝐾 ) ) |
| 44 |
20 42 43
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ⊆ 𝑉 ) → ( ( oc ‘ 𝐾 ) ‘ ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ∩ { 𝑧 ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ∣ 𝑋 ⊆ 𝑧 } ) ) ∈ ( Base ‘ 𝐾 ) ) |
| 45 |
|
f1ocnvfv1 |
⊢ ( ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) : ( Base ‘ 𝐾 ) –1-1-onto→ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ∧ ( ( oc ‘ 𝐾 ) ‘ ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ∩ { 𝑧 ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ∣ 𝑋 ⊆ 𝑧 } ) ) ∈ ( Base ‘ 𝐾 ) ) → ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( oc ‘ 𝐾 ) ‘ ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ∩ { 𝑧 ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ∣ 𝑋 ⊆ 𝑧 } ) ) ) ) = ( ( oc ‘ 𝐾 ) ‘ ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ∩ { 𝑧 ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ∣ 𝑋 ⊆ 𝑧 } ) ) ) |
| 46 |
18 44 45
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ⊆ 𝑉 ) → ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( oc ‘ 𝐾 ) ‘ ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ∩ { 𝑧 ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ∣ 𝑋 ⊆ 𝑧 } ) ) ) ) = ( ( oc ‘ 𝐾 ) ‘ ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ∩ { 𝑧 ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ∣ 𝑋 ⊆ 𝑧 } ) ) ) |
| 47 |
12 46
|
eqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ⊆ 𝑉 ) → ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ⊥ ‘ 𝑋 ) ) = ( ( oc ‘ 𝐾 ) ‘ ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ∩ { 𝑧 ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ∣ 𝑋 ⊆ 𝑧 } ) ) ) |
| 48 |
47
|
fveq2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ⊆ 𝑉 ) → ( ( oc ‘ 𝐾 ) ‘ ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ⊥ ‘ 𝑋 ) ) ) = ( ( oc ‘ 𝐾 ) ‘ ( ( oc ‘ 𝐾 ) ‘ ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ∩ { 𝑧 ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ∣ 𝑋 ⊆ 𝑧 } ) ) ) ) |
| 49 |
13 8
|
opococ |
⊢ ( ( 𝐾 ∈ OP ∧ ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ∩ { 𝑧 ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ∣ 𝑋 ⊆ 𝑧 } ) ∈ ( Base ‘ 𝐾 ) ) → ( ( oc ‘ 𝐾 ) ‘ ( ( oc ‘ 𝐾 ) ‘ ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ∩ { 𝑧 ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ∣ 𝑋 ⊆ 𝑧 } ) ) ) = ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ∩ { 𝑧 ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ∣ 𝑋 ⊆ 𝑧 } ) ) |
| 50 |
20 42 49
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ⊆ 𝑉 ) → ( ( oc ‘ 𝐾 ) ‘ ( ( oc ‘ 𝐾 ) ‘ ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ∩ { 𝑧 ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ∣ 𝑋 ⊆ 𝑧 } ) ) ) = ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ∩ { 𝑧 ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ∣ 𝑋 ⊆ 𝑧 } ) ) |
| 51 |
48 50
|
eqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ⊆ 𝑉 ) → ( ( oc ‘ 𝐾 ) ‘ ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ⊥ ‘ 𝑋 ) ) ) = ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ∩ { 𝑧 ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ∣ 𝑋 ⊆ 𝑧 } ) ) |
| 52 |
51
|
fveq2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ⊆ 𝑉 ) → ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( oc ‘ 𝐾 ) ‘ ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ⊥ ‘ 𝑋 ) ) ) ) = ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ∩ { 𝑧 ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ∣ 𝑋 ⊆ 𝑧 } ) ) ) |
| 53 |
|
f1ocnvfv2 |
⊢ ( ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) : ( Base ‘ 𝐾 ) –1-1-onto→ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ∧ ∩ { 𝑧 ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ∣ 𝑋 ⊆ 𝑧 } ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) → ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ∩ { 𝑧 ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ∣ 𝑋 ⊆ 𝑧 } ) ) = ∩ { 𝑧 ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ∣ 𝑋 ⊆ 𝑧 } ) |
| 54 |
18 40 53
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ⊆ 𝑉 ) → ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ∩ { 𝑧 ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ∣ 𝑋 ⊆ 𝑧 } ) ) = ∩ { 𝑧 ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ∣ 𝑋 ⊆ 𝑧 } ) |
| 55 |
10 52 54
|
3eqtrrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ⊆ 𝑉 ) → ∩ { 𝑧 ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ∣ 𝑋 ⊆ 𝑧 } = ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ) |
| 56 |
5 55
|
sseqtrid |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ⊆ 𝑉 ) → 𝑋 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ) |