| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dochss.h |
|
| 2 |
|
dochss.u |
|
| 3 |
|
dochss.v |
|
| 4 |
|
dochss.o |
|
| 5 |
|
ssintub |
|
| 6 |
|
eqid |
|
| 7 |
1 6 2 3 4
|
dochcl |
|
| 8 |
|
eqid |
|
| 9 |
8 1 6 4
|
dochvalr |
|
| 10 |
7 9
|
syldan |
|
| 11 |
8 1 6 2 3 4
|
dochval2 |
|
| 12 |
11
|
fveq2d |
|
| 13 |
|
eqid |
|
| 14 |
|
eqid |
|
| 15 |
13 1 6 2 14
|
dihf11 |
|
| 16 |
15
|
adantr |
|
| 17 |
|
f1f1orn |
|
| 18 |
16 17
|
syl |
|
| 19 |
|
hlop |
|
| 20 |
19
|
ad2antrr |
|
| 21 |
|
simpl |
|
| 22 |
|
ssrab2 |
|
| 23 |
22
|
a1i |
|
| 24 |
|
eqid |
|
| 25 |
24 1 6 2 3
|
dih1 |
|
| 26 |
25
|
adantr |
|
| 27 |
|
f1fn |
|
| 28 |
16 27
|
syl |
|
| 29 |
13 24
|
op1cl |
|
| 30 |
20 29
|
syl |
|
| 31 |
|
fnfvelrn |
|
| 32 |
28 30 31
|
syl2anc |
|
| 33 |
26 32
|
eqeltrrd |
|
| 34 |
|
simpr |
|
| 35 |
|
sseq2 |
|
| 36 |
35
|
elrab |
|
| 37 |
33 34 36
|
sylanbrc |
|
| 38 |
37
|
ne0d |
|
| 39 |
1 6
|
dihintcl |
|
| 40 |
21 23 38 39
|
syl12anc |
|
| 41 |
|
f1ocnvdm |
|
| 42 |
18 40 41
|
syl2anc |
|
| 43 |
13 8
|
opoccl |
|
| 44 |
20 42 43
|
syl2anc |
|
| 45 |
|
f1ocnvfv1 |
|
| 46 |
18 44 45
|
syl2anc |
|
| 47 |
12 46
|
eqtrd |
|
| 48 |
47
|
fveq2d |
|
| 49 |
13 8
|
opococ |
|
| 50 |
20 42 49
|
syl2anc |
|
| 51 |
48 50
|
eqtrd |
|
| 52 |
51
|
fveq2d |
|
| 53 |
|
f1ocnvfv2 |
|
| 54 |
18 40 53
|
syl2anc |
|
| 55 |
10 52 54
|
3eqtrrd |
|
| 56 |
5 55
|
sseqtrid |
|