Step |
Hyp |
Ref |
Expression |
1 |
|
dochss.h |
|
2 |
|
dochss.u |
|
3 |
|
dochss.v |
|
4 |
|
dochss.o |
|
5 |
|
ssintub |
|
6 |
|
eqid |
|
7 |
1 6 2 3 4
|
dochcl |
|
8 |
|
eqid |
|
9 |
8 1 6 4
|
dochvalr |
|
10 |
7 9
|
syldan |
|
11 |
8 1 6 2 3 4
|
dochval2 |
|
12 |
11
|
fveq2d |
|
13 |
|
eqid |
|
14 |
|
eqid |
|
15 |
13 1 6 2 14
|
dihf11 |
|
16 |
15
|
adantr |
|
17 |
|
f1f1orn |
|
18 |
16 17
|
syl |
|
19 |
|
hlop |
|
20 |
19
|
ad2antrr |
|
21 |
|
simpl |
|
22 |
|
ssrab2 |
|
23 |
22
|
a1i |
|
24 |
|
eqid |
|
25 |
24 1 6 2 3
|
dih1 |
|
26 |
25
|
adantr |
|
27 |
|
f1fn |
|
28 |
16 27
|
syl |
|
29 |
13 24
|
op1cl |
|
30 |
20 29
|
syl |
|
31 |
|
fnfvelrn |
|
32 |
28 30 31
|
syl2anc |
|
33 |
26 32
|
eqeltrrd |
|
34 |
|
simpr |
|
35 |
|
sseq2 |
|
36 |
35
|
elrab |
|
37 |
33 34 36
|
sylanbrc |
|
38 |
37
|
ne0d |
|
39 |
1 6
|
dihintcl |
|
40 |
21 23 38 39
|
syl12anc |
|
41 |
|
f1ocnvdm |
|
42 |
18 40 41
|
syl2anc |
|
43 |
13 8
|
opoccl |
|
44 |
20 42 43
|
syl2anc |
|
45 |
|
f1ocnvfv1 |
|
46 |
18 44 45
|
syl2anc |
|
47 |
12 46
|
eqtrd |
|
48 |
47
|
fveq2d |
|
49 |
13 8
|
opococ |
|
50 |
20 42 49
|
syl2anc |
|
51 |
48 50
|
eqtrd |
|
52 |
51
|
fveq2d |
|
53 |
|
f1ocnvfv2 |
|
54 |
18 40 53
|
syl2anc |
|
55 |
10 52 54
|
3eqtrrd |
|
56 |
5 55
|
sseqtrid |
|