Step |
Hyp |
Ref |
Expression |
1 |
|
opcon3.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
opcon3.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
opcon3.o |
⊢ ⊥ = ( oc ‘ 𝐾 ) |
4 |
1 2 3
|
oplecon3 |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ≤ 𝑌 → ( ⊥ ‘ 𝑌 ) ≤ ( ⊥ ‘ 𝑋 ) ) ) |
5 |
|
simp1 |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝐾 ∈ OP ) |
6 |
1 3
|
opoccl |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑌 ∈ 𝐵 ) → ( ⊥ ‘ 𝑌 ) ∈ 𝐵 ) |
7 |
6
|
3adant2 |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ⊥ ‘ 𝑌 ) ∈ 𝐵 ) |
8 |
1 3
|
opoccl |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ) → ( ⊥ ‘ 𝑋 ) ∈ 𝐵 ) |
9 |
8
|
3adant3 |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ⊥ ‘ 𝑋 ) ∈ 𝐵 ) |
10 |
1 2 3
|
oplecon3 |
⊢ ( ( 𝐾 ∈ OP ∧ ( ⊥ ‘ 𝑌 ) ∈ 𝐵 ∧ ( ⊥ ‘ 𝑋 ) ∈ 𝐵 ) → ( ( ⊥ ‘ 𝑌 ) ≤ ( ⊥ ‘ 𝑋 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ≤ ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) ) ) |
11 |
5 7 9 10
|
syl3anc |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( ⊥ ‘ 𝑌 ) ≤ ( ⊥ ‘ 𝑋 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ≤ ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) ) ) |
12 |
1 3
|
opococ |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = 𝑋 ) |
13 |
12
|
3adant3 |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = 𝑋 ) |
14 |
1 3
|
opococ |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑌 ∈ 𝐵 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) = 𝑌 ) |
15 |
14
|
3adant2 |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) = 𝑌 ) |
16 |
13 15
|
breq12d |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ≤ ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) ↔ 𝑋 ≤ 𝑌 ) ) |
17 |
11 16
|
sylibd |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( ⊥ ‘ 𝑌 ) ≤ ( ⊥ ‘ 𝑋 ) → 𝑋 ≤ 𝑌 ) ) |
18 |
4 17
|
impbid |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ≤ 𝑌 ↔ ( ⊥ ‘ 𝑌 ) ≤ ( ⊥ ‘ 𝑋 ) ) ) |