Step |
Hyp |
Ref |
Expression |
1 |
|
dochvalr3.o |
⊢ ⊥ = ( oc ‘ 𝐾 ) |
2 |
|
dochvalr3.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
3 |
|
dochvalr3.i |
⊢ 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
dochvalr3.n |
⊢ 𝑁 = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
5 |
|
dochvalr3.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
6 |
|
dochvalr3.x |
⊢ ( 𝜑 → 𝑋 ∈ ran 𝐼 ) |
7 |
|
eqid |
⊢ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
8 |
|
eqid |
⊢ ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) = ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) |
9 |
2 7 3 8
|
dihrnss |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → 𝑋 ⊆ ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
10 |
5 6 9
|
syl2anc |
⊢ ( 𝜑 → 𝑋 ⊆ ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
11 |
2 3 7 8 4
|
dochcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ⊆ ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ) → ( 𝑁 ‘ 𝑋 ) ∈ ran 𝐼 ) |
12 |
5 10 11
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ 𝑋 ) ∈ ran 𝐼 ) |
13 |
2 3
|
dihcnvid2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑁 ‘ 𝑋 ) ∈ ran 𝐼 ) → ( 𝐼 ‘ ( ◡ 𝐼 ‘ ( 𝑁 ‘ 𝑋 ) ) ) = ( 𝑁 ‘ 𝑋 ) ) |
14 |
5 12 13
|
syl2anc |
⊢ ( 𝜑 → ( 𝐼 ‘ ( ◡ 𝐼 ‘ ( 𝑁 ‘ 𝑋 ) ) ) = ( 𝑁 ‘ 𝑋 ) ) |
15 |
1 2 3 4
|
dochvalr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → ( 𝑁 ‘ 𝑋 ) = ( 𝐼 ‘ ( ⊥ ‘ ( ◡ 𝐼 ‘ 𝑋 ) ) ) ) |
16 |
5 6 15
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ 𝑋 ) = ( 𝐼 ‘ ( ⊥ ‘ ( ◡ 𝐼 ‘ 𝑋 ) ) ) ) |
17 |
14 16
|
eqtr2d |
⊢ ( 𝜑 → ( 𝐼 ‘ ( ⊥ ‘ ( ◡ 𝐼 ‘ 𝑋 ) ) ) = ( 𝐼 ‘ ( ◡ 𝐼 ‘ ( 𝑁 ‘ 𝑋 ) ) ) ) |
18 |
5
|
simpld |
⊢ ( 𝜑 → 𝐾 ∈ HL ) |
19 |
|
hlop |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ OP ) |
20 |
18 19
|
syl |
⊢ ( 𝜑 → 𝐾 ∈ OP ) |
21 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
22 |
21 2 3
|
dihcnvcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → ( ◡ 𝐼 ‘ 𝑋 ) ∈ ( Base ‘ 𝐾 ) ) |
23 |
5 6 22
|
syl2anc |
⊢ ( 𝜑 → ( ◡ 𝐼 ‘ 𝑋 ) ∈ ( Base ‘ 𝐾 ) ) |
24 |
21 1
|
opoccl |
⊢ ( ( 𝐾 ∈ OP ∧ ( ◡ 𝐼 ‘ 𝑋 ) ∈ ( Base ‘ 𝐾 ) ) → ( ⊥ ‘ ( ◡ 𝐼 ‘ 𝑋 ) ) ∈ ( Base ‘ 𝐾 ) ) |
25 |
20 23 24
|
syl2anc |
⊢ ( 𝜑 → ( ⊥ ‘ ( ◡ 𝐼 ‘ 𝑋 ) ) ∈ ( Base ‘ 𝐾 ) ) |
26 |
21 2 3
|
dihcnvcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑁 ‘ 𝑋 ) ∈ ran 𝐼 ) → ( ◡ 𝐼 ‘ ( 𝑁 ‘ 𝑋 ) ) ∈ ( Base ‘ 𝐾 ) ) |
27 |
5 12 26
|
syl2anc |
⊢ ( 𝜑 → ( ◡ 𝐼 ‘ ( 𝑁 ‘ 𝑋 ) ) ∈ ( Base ‘ 𝐾 ) ) |
28 |
21 2 3
|
dih11 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ⊥ ‘ ( ◡ 𝐼 ‘ 𝑋 ) ) ∈ ( Base ‘ 𝐾 ) ∧ ( ◡ 𝐼 ‘ ( 𝑁 ‘ 𝑋 ) ) ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝐼 ‘ ( ⊥ ‘ ( ◡ 𝐼 ‘ 𝑋 ) ) ) = ( 𝐼 ‘ ( ◡ 𝐼 ‘ ( 𝑁 ‘ 𝑋 ) ) ) ↔ ( ⊥ ‘ ( ◡ 𝐼 ‘ 𝑋 ) ) = ( ◡ 𝐼 ‘ ( 𝑁 ‘ 𝑋 ) ) ) ) |
29 |
5 25 27 28
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐼 ‘ ( ⊥ ‘ ( ◡ 𝐼 ‘ 𝑋 ) ) ) = ( 𝐼 ‘ ( ◡ 𝐼 ‘ ( 𝑁 ‘ 𝑋 ) ) ) ↔ ( ⊥ ‘ ( ◡ 𝐼 ‘ 𝑋 ) ) = ( ◡ 𝐼 ‘ ( 𝑁 ‘ 𝑋 ) ) ) ) |
30 |
17 29
|
mpbid |
⊢ ( 𝜑 → ( ⊥ ‘ ( ◡ 𝐼 ‘ 𝑋 ) ) = ( ◡ 𝐼 ‘ ( 𝑁 ‘ 𝑋 ) ) ) |