Metamath Proof Explorer


Theorem dochvalr2

Description: Orthocomplement of a closed subspace. (Contributed by NM, 21-Jul-2014)

Ref Expression
Hypotheses dochvalr2.b 𝐵 = ( Base ‘ 𝐾 )
dochvalr2.o = ( oc ‘ 𝐾 )
dochvalr2.h 𝐻 = ( LHyp ‘ 𝐾 )
dochvalr2.i 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )
dochvalr2.n 𝑁 = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
Assertion dochvalr2 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋𝐵 ) → ( 𝑁 ‘ ( 𝐼𝑋 ) ) = ( 𝐼 ‘ ( 𝑋 ) ) )

Proof

Step Hyp Ref Expression
1 dochvalr2.b 𝐵 = ( Base ‘ 𝐾 )
2 dochvalr2.o = ( oc ‘ 𝐾 )
3 dochvalr2.h 𝐻 = ( LHyp ‘ 𝐾 )
4 dochvalr2.i 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )
5 dochvalr2.n 𝑁 = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
6 1 3 4 dihcl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋𝐵 ) → ( 𝐼𝑋 ) ∈ ran 𝐼 )
7 2 3 4 5 dochvalr ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐼𝑋 ) ∈ ran 𝐼 ) → ( 𝑁 ‘ ( 𝐼𝑋 ) ) = ( 𝐼 ‘ ( ‘ ( 𝐼 ‘ ( 𝐼𝑋 ) ) ) ) )
8 6 7 syldan ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋𝐵 ) → ( 𝑁 ‘ ( 𝐼𝑋 ) ) = ( 𝐼 ‘ ( ‘ ( 𝐼 ‘ ( 𝐼𝑋 ) ) ) ) )
9 1 3 4 dihcnvid1 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋𝐵 ) → ( 𝐼 ‘ ( 𝐼𝑋 ) ) = 𝑋 )
10 9 fveq2d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋𝐵 ) → ( ‘ ( 𝐼 ‘ ( 𝐼𝑋 ) ) ) = ( 𝑋 ) )
11 10 fveq2d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋𝐵 ) → ( 𝐼 ‘ ( ‘ ( 𝐼 ‘ ( 𝐼𝑋 ) ) ) ) = ( 𝐼 ‘ ( 𝑋 ) ) )
12 8 11 eqtrd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋𝐵 ) → ( 𝑁 ‘ ( 𝐼𝑋 ) ) = ( 𝐼 ‘ ( 𝑋 ) ) )