| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dochvalr2.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
| 2 |
|
dochvalr2.o |
⊢ ⊥ = ( oc ‘ 𝐾 ) |
| 3 |
|
dochvalr2.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 4 |
|
dochvalr2.i |
⊢ 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) |
| 5 |
|
dochvalr2.n |
⊢ 𝑁 = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
| 6 |
1 3 4
|
dihcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝐵 ) → ( 𝐼 ‘ 𝑋 ) ∈ ran 𝐼 ) |
| 7 |
2 3 4 5
|
dochvalr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐼 ‘ 𝑋 ) ∈ ran 𝐼 ) → ( 𝑁 ‘ ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( ⊥ ‘ ( ◡ 𝐼 ‘ ( 𝐼 ‘ 𝑋 ) ) ) ) ) |
| 8 |
6 7
|
syldan |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝐵 ) → ( 𝑁 ‘ ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( ⊥ ‘ ( ◡ 𝐼 ‘ ( 𝐼 ‘ 𝑋 ) ) ) ) ) |
| 9 |
1 3 4
|
dihcnvid1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝐵 ) → ( ◡ 𝐼 ‘ ( 𝐼 ‘ 𝑋 ) ) = 𝑋 ) |
| 10 |
9
|
fveq2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝐵 ) → ( ⊥ ‘ ( ◡ 𝐼 ‘ ( 𝐼 ‘ 𝑋 ) ) ) = ( ⊥ ‘ 𝑋 ) ) |
| 11 |
10
|
fveq2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝐵 ) → ( 𝐼 ‘ ( ⊥ ‘ ( ◡ 𝐼 ‘ ( 𝐼 ‘ 𝑋 ) ) ) ) = ( 𝐼 ‘ ( ⊥ ‘ 𝑋 ) ) ) |
| 12 |
8 11
|
eqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝐵 ) → ( 𝑁 ‘ ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( ⊥ ‘ 𝑋 ) ) ) |