Step |
Hyp |
Ref |
Expression |
1 |
|
dochoc0.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
dochoc0.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
dochoc0.o |
⊢ ⊥ = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
dochoc0.z |
⊢ 0 = ( 0g ‘ 𝑈 ) |
5 |
|
dochoc0.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
6 |
|
eqid |
⊢ ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 ) |
7 |
1 2 3 6 4
|
doch0 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( ⊥ ‘ { 0 } ) = ( Base ‘ 𝑈 ) ) |
8 |
7
|
fveq2d |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( ⊥ ‘ ( ⊥ ‘ { 0 } ) ) = ( ⊥ ‘ ( Base ‘ 𝑈 ) ) ) |
9 |
1 2 3 6 4
|
doch1 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( ⊥ ‘ ( Base ‘ 𝑈 ) ) = { 0 } ) |
10 |
8 9
|
eqtrd |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( ⊥ ‘ ( ⊥ ‘ { 0 } ) ) = { 0 } ) |
11 |
5 10
|
syl |
⊢ ( 𝜑 → ( ⊥ ‘ ( ⊥ ‘ { 0 } ) ) = { 0 } ) |